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Abstract
Stress is a prevalent and growing phenomenon in the modern world potentially leading to significant repercussions on
both physical and mental health. The analysis of physiological signals, collected from wearable sensors, has emerged as a
promising approach to predicting and managing stress. Methods based on machine learning techniques have been defined
in the literature and achieved promising results by using handcrafted features extracted from the signal. However, there
is no consensus on the list of features, while deep learning approaches that overcomes the problem require significant
computational power and a large amount of data. In this paper, we present a comprehensive view of the most common
representative machine learning algorithms applied to the stress detection domain by giving a reference point for both
academia and industry professionals in this application field. This study considers fragments of signals without extracting
any features and uses a public dataset, WESAD, that contains high-resolution physiological, including blood volume pulse,
electrocardiogram and electromyogram. The data collected from 15 subjects during a lab study are heterogeneous and
characterized by different frequencies and noises due to some devices. After preprocessing, we assess the performance of ten
machine learning algorithms belonging to four models (tree, ensemble, linear and neighbours) on the WESAD by facing the
problem as binary (stress/no-stress) and multiclass (baseline, stress, and amusement) classifications. Our results, evaluated in
terms of classical metrics, show that Random Forest outperforms the others in binary and multi-class approaches.
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1. Introduction
Stress is a non-specific body reaction to any demand
upon it. Its effects influence overall behaviour, well-being,
and potential personal and professional successes [1].
Chronic stress may give rise to significant physical and
mental health issues, such as cancer, cardiovascular dis-
ease, depression, and diabetes. It is an increasingly preva-
lent and pervasive phenomenon in the modern world:
more than 50% of all work-related ill health cases in
2020/21 are due to stress [2]. Assessments based on psy-
chologically designed questions, such as the Perceived
Stress Scale (PSS) [3], are frequently used to detect stress.
However, these methods may be time-consuming, psy-
chologically invasive and lack reliability. Therefore, the
definition of non-invasive approaches for rapid and accu-
rate stress detection influences the quality and wellness
of people’s lives: managing stress before it causes health
issues is fundamental. In the literature, it has been demon-
strated that physiological signals, a response to the Au-
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tonomic Nervous System, allow us to detect and monitor
stress. Hovsepian et al. [4] pioneered the stress detection
by using physiological signals. Both faced the problem
as a binary classification problem, whereas Gjoreski et
al. [5] aimed at distinguishing different levels of stress
(no stress versus low stress versus high stress). Such
bioignals can be captured non-invasively by wearable
devices, such as smartphones and smartwatches, com-
monly used among people. Such devices can monitor
some physiological parameters, such as Blood Volume
Pulse (BVP), Electrodermal Activity (EDA), temperature
(TEMP), and heart rate (HR) etc. In the scenario of stress
detection, machine learning and deep learning method-
ologies achieve promising results by analyzing these data.
These approaches include support vector machines, ran-
dom forest and k-nearest neighbours and use handcrafted
features extracted from the pre-processed signal in order
to reduce the data noises [6]. Moreover, no consensus
on the list of features to extract from physiological data
has been reached [7]. To solve the problem, advanced
deep learning approaches have been applied since they
have the ability to automatically comprehend patterns
and, thus extract features. Nevertheless, these require
significant computational power and a large amount of
data. The appropriate machine learning algorithm choice
for a particular problem task is not trivial: no single clas-
sifier works best across all possible scenarios, as stated
by no free lunch theorem states [8]. To the best of our
knowledge, no scientific work compares machine learn-
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ing methods for stress detection on the same datasets
without feature extraction or dimensionality reduction.

In this paper, we present a comprehensive view of
the most common representative machine learning algo-
rithms applied to the stress detection domain by giving
a reference point for both academia and industry pro-
fessionals in this application field. In the analysis, we
consider fragments of signals without extracting any fea-
tures due to the nature of the problem: stress determines
nonspecific human responses and the feature selection
depends on the subject and do not can be generalized.
Such signal fragments contain samples of all the physio-
logical parameters measured. After appropriate resam-
pling and noise reduction, these values are linearized
and constitute the input of the considered ML model by
following the neural network approach. This study uses
the WESAD [9] dataset that is public and stores 12 phys-
iological signals, such as blood volume pulse and electro-
cardiogram, collected from 15 subjects during a lab study.
After preprocessing (consisting of resampling, outlier re-
moval, and normalization), we determine a dataset of
samples that are signal fragments obtained using the slid-
ing window approach. Over these entries, we evaluate
the most common and popular methods widely in various
application areas. We consider eight machine learning
algorithms, i.e, Decision Tree (DT), Random Forest (RF),
Adaboost (AB), Extratree (ExT), Passive Aggressive Clas-
sifier (PA), Logistic Regression (LR), K-kneighbors (NKE)
and Nearest Centrod (NC). We face the binary (stress/no-
stress) and multi-class (baseline, stress, and amusement)
problem classifications. The results, evaluated in terms
of classical metrics, show that RF outperforms the others
in binary and multi-class approach. We also compare the
results obtained with the ones in the literature [9].

The paper is organized as follows. Section 2 describes
the materials and the methods used in this study. The
pipeline of the approach used in the study with the main
results are described in Section 3. The paper ends with
some conclusion and future work, Section 4.

2. MATERIALS AND METHODS
This work proposes a comparative evaluation of ML ap-
proaches to understand the best approach for real-time
analytics. For this study, we consider the WESAD dataset.

2.1. Dataset
WESAD is a public dataset designed for stress and affec-
tive detection. It is a high-quality multimodal dataset
storing physiological and movement data of 15 subjects
(12 male and 3 female) during a controlled lab experi-
ment [9]. All the participants were not heavy smokers
and did not suffer from chronic mental or cardiovascu-

Figure 1: The two protocol versions used to collect data

lar disorders. Furthermore, the females subjects were
not pregnant. The dataset includes blood volume pulse
(BVP), electrocardiogram (ECG), electrodermal activity
(EDA), electromyogram (EMG), respiration (RESP), body
temperature (TEMP), and three-axis acceleration (ACC).
ECG, EDA, EMG, RESP, TEMP and ACC were recorded
by a chest-worn device (RespiBan) and sampled at 700
Hz, whereas a wrist-worn device (Empatica E4) recorded
BVP (sampled at 64 Hz), EDA (at 4 Hz), TEMP (at 4 Hz),
and ACC (at 32 Hz). The dataset comprises 14 time series,
each spanning approximately 2 hours, total experimental
duration. The experiments were conducted to capture
three distinct affective states: baseline, stress, and amuse-
ment with durations of 20 minutes, 392 seconds and 7
minutes, respectively. They also included two meditation
periods. To capture the data during the experiment, a
particular protocol, depicted in Figure 1, has been used. It
consists of two different versions, where amusement and
stressful conditions are interchanged between different
subjects to avoid the effects of order.

2.2. Preprocessing
The varied sampling frequencies in WESAD, as detailed
in Section 2.1, necessitated a harmonization step. We
resampled all data to match the 700Hz frequency of the
RespiBAN. Therefore, the resampling is applied only to
the time series detected by Empatica E4 using Fourier
method as an unsampling technique.

After the resampling, we remove the outliers due to oc-
casional anomalous peaks in some signals, which may be
attributed to instrumental errors or measurement noise.
We removed the anomalies from each time series by us-
ing a Hampel filter, discussed in [10]. Such a filter uses
1-minute sliding windows as input and calculates the
mean (𝜇) and standard deviation (𝜎) of the values within
the corresponding interval. Observations higher than the
threshold of 3𝜎 from the mean within the respective win-
dow are classified as outliers (following Pearson’s rule)
and are substituted with the nearest chronological value.
This strategy ensures that outlier substitution doesn’t
introduce significant high-frequency variations.

After outliers removal, we normalize all signals in
the interval [−1, 1] to treat all inputs equally.Let 𝑋 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛} be the considered time series with 𝑛
components, where each component corresponds to a
biophysical signal. Each of them are rescaled to the in-



Figure 2: Label distributions of datasets created for multi-
class and binary classification.

terval [−1, 1] by applying the mean normalization:

𝑥̃𝑗 =
(𝑥𝑖 −𝑚𝑎𝑥(𝑋)) + ((𝑥𝑖 −𝑚𝑖𝑛(𝑋))

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)

where 𝑚𝑎𝑥(𝑋) and 𝑚𝑖𝑛(𝑋) is the maximum and
minimum value among each component of 𝑋 , respec-
tively. Therefore, the input is a the scaled time series,
𝑋̃ = {𝑥̃1, 𝑥̃2, . . . , 𝑥̃𝑛}.

2.3. Dataset Entry
After the data preprocessing phase, we create two
datasets: one for binary classification and the other for
multiclass. All entries are obtained by applying the slid-
ing window technique to preprocessed signals. Specifi-
cally, the entries consist of time series fragments charac-
terized by only an emotional state (or label) obtained by
a slide of 60 seconds and a stride of 30 seconds, according
to the study in [11]. To create the multiclass dataset, we
consider parts of the time series associated with stress,
Baseline and Amusement, as described in Section 2.1. For
the binary classification, both the Baseline and Amuse-
ment states were aggregated under a single ’non-stress’
label. The labels distribution of the two datasets are
shown in Fig. 2.

2.4. Machine Learning Algorithms
In this section, we describe some machine learning clas-
sification techniques. Interested readers can refer to [12]
for a complete treatment of machine learning approaches.

2.4.1. Decision Tree

A DT is a non-parametric supervised learning algorithm
for classification and regression in the form of a tree
structure [13]. It predicts the value of a target variable
by learning simple decision rules inferred from the data
features. The method exploits the “divide et impera”
approach to learning: it learns from data with a set of
if-then-else decision rules. The depth directly correlates
with the complexity of these decision rules. The output
is a tree comprising decision nodes and leaf nodes: a
decision node has two or more branches, and a leaf node

represents a classification or decision. The root of the tree
corresponds to the best predictor. Usually, a DT is pruned
by combining the adjacent nodes to avoid overfitting.

2.4.2. Ensemble models

Ensemble learning is a kind of model that makes predic-
tions considering and combining a number of different
models. By such a combination, an ensemble learning
tends to be more flexible and less data sensitive.

Random Forest Random Forest is an ensemble model
by Breiman [14] for both classification and regression.
It constructs a set of decision trees during training and
determines the prediction by selecting the most com-
mon class in the classification problem or calculating the
mean/average prediction in the regression problem of
the classes output by individual trees. This model com-
bines the bagging approach with the random selection
of features to ensure the uncorrelation among the deci-
sion trees of the forest. Feature randomness generates a
random subset of features by ensuring low correlation
among decision trees. In bagging, the decision trees de-
pend on trees created from a different bootstrap sample,
i.e., samples that may appear more than once in the en-
tries of the training dataset. Differently from decision
trees that consider all the possible feature splits, random
forests only select a subset of those features.

AdaBoost AdaBoost, Adaptive Boosting, is an ensem-
ble models developed by Yoav Freund et al. [15]. It em-
ploys an iterative approach to improve poor classifiers
by learning from their errors. Unlike the random forest
that uses parallel ensembling, Adaboost uses “sequential
ensembling”. Therefore, it is not possible to parallelize
jobs on a multiprocessor machine like Random Forest. It
creates a classifier by combining many poorly perform-
ing classifiers to obtain a good classifier of high accuracy.
Such resulting classifier is accomplished with sequen-
tial weight adjustments, individual voting powers and a
weighted sum of the final algorithm classifiers.

Extremely Randomized Trees Extremely Random-
ized Trees, introduced in [16], are ensembling methods
that perform regression or classification. It creates a
large number of unpruned decision trees from the train-
ing dataset and uses majority voting to select the decision
trees for the classification. Different from Random Forest,
it uses the entire dataset to train decision trees. Moreover,
it randomly selects the values at which to split a feature
and create child nodes to ensure sufficient differences
between individual decision trees.



2.4.3. Linear Models

Logistic Regression Logistic Regression, introduced
in [17], is a supervised learning algorithm mainly used
for classification tasks where the aim is to estimate the
probability of an instance belonging to a specific class
based on the values of the input features. The method
uses the sigmoid function to map any real-valued num-
ber into a value between 0 and 1. More specifically, it
calculates a weighted sum of the input features, applies
the logistic function to this sum, and then classifies the
input as belonging to one of the two classes based on a
chosen threshold.

Passive Aggressive The passive-aggressive algorithm,
introduced in [18], is one of the few "online learning
algorithms": the input data comes in sequential order,
and the model is updated step-by-step. It is useful in
applications that receive data as a continuous flow and
need to adapt to change rapidly or autonomously or if
you have limited computing resources. The algorithm
is based on based on Passive and Aggressive approches.
If the prediction is correct, keep the model and do not
make any changes (passive), while If the prediction is
incorrect, make changes to the model.

2.4.4. Neighbors-based Models

Supervised neighbors-based models can be applied for
classification and regression. The principle behind near-
est neighbor methods is to find a predefined number of
training samples closest in distance to the new point, and
predict the label from these.

K-Nearest Neighbors The k-nearest neighbours al-
gorithm, introduced by Fix and Hodges in 1951 [19] and
expanded by [20], is a non-parametric supervised learn-
ing method for classification and regression. K-nearest
neighbours algorithm exploits proximity to make classifi-
cations or predictions about the grouping of an individual
data point. KNN searches for the k-nearest labelled train-
ing data by using the distance metric and attributes the
label which appears the most to the new observation. In
our study, we use the Minkowski distance as a metric.
The input consists of the k closest training examples in a
data set, whereas the output depends on the task, classi-
fication or regression. Such output is a class membership
or the property value for the entry, respectively.

Nearest Centroid Nearest Centroids, defined in [21],
is arguably the simplest classifier. It operates on an intu-
itive principle: it takes data samples as input and classifies
them into the class of training examples whose centroid
(a geometric centre of a data distribution) is closest to it.
The algorithm assumes that the centroids are distinct for

each class (target label). The training data is divided into
clusters based on their class labels, and then the centroid
is computed for each data cluster. Each centroid is simply
the mean value of each of the input variables. Such a
centroid represents the "model": given new examples, the
algorithm assigns the label by computing the distance
between a given data and each centroid.

2.5. Metrics
We evaluate the performance and effectiveness of the ap-
proaches by using Accuracy (𝐴𝑐𝑐), Precision (𝑃 ), Recall
(𝑅), and F-measure (𝐹1), defined as follows

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 · 𝑃 ·𝑅
𝑃 +𝑅

where 𝑇𝑃 represents the number of true positive, 𝐹𝑁
denotes the number of false negative, 𝐹𝑃 represents the
number of false positive, 𝑇𝑁 denotes the number of true
negative.

3. RESULTS
The work aims to compare various machine learning algo-
rithms to detect stress from signals captured by wearable
devices. The workflow is described in Section 3.1, while
the results of the experiments are described in Section 3.2.

3.1. Methodology
Our pipeline, depicted in Fig. 3, is implemented in Python
using the scikit-learn package for the machine learning
approaches and SciPy for data manipulation and analy-
sis. In particular, some methods of the SciPy library is
used in the data preprocessing phase. The method resam-
ple permits the resampling of signals. In our approach,
all signals are resampled at 700 Hz. About the outlier
remotion, the Hampel filter is implemented using the
‘rolling‘, ‘mean‘, ‘std‘, ‘fillna‘, ‘mask‘, and ‘interpolate‘
methods from the Pandas library. The ‘MinMaxScaler‘
class of the scikit-learn package is used to perform data
normalization. The machine learning methods Decision
Tree, Random Forest , K-Nearest Neighbors and Logis-
tic Regression are implemented via the tree, ensemble,
neighbors and linear model modules, respectively. The
method K-Folds is used to split the dataset into 𝑘 con-
secutive folds without shuffling and then each fold is



Figure 3: Pipeline used for the method comparison

then used once as a validation while the 𝑘 − 1 remain-
ing folds form the training set. The code used in this
manuscript are available from the corresponding author
upon reasonable request.

3.2. Experiments
Given the small number of subjects involved in the ex-
periment, we consider the Leave-One-Subject-Out Cross-
Validation (LOSOCV), i.e., an approach that utilizes each
subject as a “test” set and the remaining 14 as a “training”
set. The experiments have been performed considering
the decision tree, random forest, K-Nearest Neighbors
and logistic regress as machine learning methods. For all
experiments, we use the default parameters.

We evaluate such experiments by considering Accu-
racy, Precision, Recall and F1-Score as metrics. Tables
1 shows the average values with the standard deviation
of the considered metrics obtained for binary and multi-
class classification, respectively. Appendix A reports the
values for each experiment.

Binary Classification
Accuracy Precision Recall F1-Score

DT 0.869± 0.150 0.924± 0.105 0.868± 0.209 0.882± 0.160

RF 0.920± 0.103 0.944± 0.100 0.945± 0.092 0.940± 0.076

AB 0.846± 0.154 0.883± 0, 143 0.907± 0.128 0.885± 0.112

ExT 0.909± 0.109 0.943± 0, 089 0.915± 0.119 0.925± 0.092

LR 0.822± 0.232 0.843± 0.208 0.925± 0.199 0.871± 0.186

PA 0.823± 0.225 0.842± 0.200 0.934± 0.187 0.874± 0.173

KNN 0.845± 0.193 0.939± 0.118 0.816± 0.251 0.851± 0.203

NC 0.929± 0.100 0.953± 0.097 0.949± 0.083 0, 945± 0.075

Multiclass Classification

Accuracy Precision Recall F1-Score
DT 0.629± 0.222 0.658± 0.195 0.629± 0.222 0.599± 0.233

RF 0.707± 0.171 0.663± 0.157 0.707± 0.171 0.664± 0.173

ExT 0, 687± 0.166 0.642± 0.152 0.687± 0.165 0.645± 0.165

KNNe 0.570± 0.239 0.615± 0.249 0.570± 0.239 0.563± 0.242

LR 0.623± 0.241 0.703± 0.208 0.623± 0.242 0.588± 0.249

NC 0.680± 0.219 0.685± 0.242 0, 680± 0.220 0.662± 0.228

Table 1
Average value with metrics with their standard deviation re-
lated to the binary and multiclass classification

The Random Forest model outpaces its counterparts in
both binary and multiclass classification scenarios. For
the RF model, the obtained accuracy stands at 92% (bi-
nary) and 70% (multiclass). Corresponding F1-scores are
88.2% and 60% , respectively. While multiclass classifica-
tion offers insights for emotion detection via wearables,
there remains room for improvement. Comparing re-
sults from Schmidt et al.’s benchmark on the WESAD
dataset [9], which utilized standardized machine learn-
ing techniques and features, our study finds that the RF

Binary Classification

Accuracy F1-score
DT 83.60 ± 1.08 80.83 ± 1.13

RF 74.97 ± 1.11 64.08 ±1.68

KNN 74.20 69.14

Multiclass Classification

Accuracy F1-score
DT 63.56 ± 1.73 58.05 ±1.61

RF 74.97 ± 1.11 64.08 ± 1.68

KNN 56.14 48.70

Table 2
Average value with metrics with their standard deviation re-
lated to the binary and multiclass classification by extraction
features from signals [9]

algorithm delivers superior performance. The accuracy
and F1-score is reported in Table 2.

Comparing the results, we note that the methods per-
forms better using signal values than signal features.

4. CONCLUSIONS AND FUTURE
WORK

In this work, we have compared various classical ma-
chine learning algorithms. We have used a public dataset,
WESAD, to perform our study. Analyzing the results, we
have noted the best results have been archived by the
random forest algorithm. This evidence is in line with the
results proposed in the literature [9]. We have observed
that classifications based on the signal values outcome
ones that consider signal features.

In future work, we intend to conduct additional exper-
iments to discern the most relevant physiological signals.
It represents another fundamental aspect of detecting
stress for real-time analysis using wearable sensors and
smartphones. In this case, the aim is to store the min-
imum information to be non-invasive and reduce the
space while maintaining high model performance. We
also intend to consider and employ deep learning ap-
proaches, such as graph convolution networks or recur-
rent neural networks, motivated by the results obtained
in other scenarios [22, 23]. Moreover, we also intend to
study the role of the length of the sliding windows from
a theoretical perspective by taking into account various
entropy-based methods that have produced evaluable out-
comes in the scenario of protein-protein interaction site
prediction [24]. Another crucial future investigation is
to explore and define approaches to extract and describe
the correlation that sliding windows represent. Other
representations, like arc-annotated sequences, strings
and simplicial complexes, will be explored. We will ex-
plore other representations like arc-annotated sequences
for the analysis and comparison of time utilizing tools
like [25] and strings or simplicial complexes, which al-
low applying techniques from formal methods to identify



patterns [26] or verify properties [27].

Acknowledgements. This work has been partially
supported by the European Union – NextGenerationEU
- National Recovery and Resilience Plan, Mission 4 Ed-
ucation and Research - Component 2 From research to
business - Investment 1.5, ECS_00000041-VITALITY - In-
novation, digitalisation and sustainability for the diffused
economy in Central Italy

References
[1] B. S. McEwen, Protective and damaging effects of

stress mediators, New England journal of medicine
338 (1998) 171–179.

[2] Health and Safety Executive, HSE on work-related
stress. 2021, http://www.hse.gov.uk/statistics/
causdis/-ffstress/index.htm, ???? Accessed on
March 7, 2022.

[3] E.-H. Lee, Review of the psychometric evidence of
the perceived stress scale, Asian nursing research
6 (2012) 121–127.

[4] K. Hovsepian, M. Al’Absi, E. Ertin, T. Kamarck,
M. Nakajima, S. Kumar, cstress: towards a gold
standard for continuous stress assessment in the
mobile environment, in: Proceedings of the 2015
ACM international joint conference on pervasive
and ubiquitous computing, 2015, pp. 493–504.

[5] M. Gjoreski, M. Luštrek, M. Gams, H. Gjoreski,
Monitoring stress with a wrist device using con-
text, Journal of biomedical informatics 73 (2017)
159–170.

[6] L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu,
X. Yang, A review of emotion recognition using
physiological signals, Sensors 18 (2018) 2074.

[7] R. Li, Z. Liu, Stress detection using deep neural
networks, BMC Medical Informatics and Decision
Making 20 (2020) 1–10.

[8] D. H. Wolpert, The lack of a priori distinctions
between learning algorithms, Neural computation
8 (1996) 1341–1390.

[9] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger,
K. Van Laerhoven, Introducing wesad, a multimodal
dataset for wearable stress and affect detection, in:
Proceedings of the 20th ACM international confer-
ence on multimodal interaction, 2018, pp. 400–408.

[10] J. Astola, P. Kuosmanen, Fundamentals of nonlinear
digital filtering, CRC press, 2020.

[11] M. Quadrini, S. Daberdaku, A. Blanda, A. Capuc-
cio, L. Bellanova, G. Gerard, Stress detection from
wearable sensor data using gramian angular fields
and cnn, in: International Conference on Discovery
Science, Springer, 2022, pp. 173–183.

[12] S. Shalev-Shwartz, S. Ben-David, Understanding

machine learning: From theory to algorithms, Cam-
bridge university press, 2014.

[13] J. R. Quinlan, Induction of decision trees, Machine
learning 1 (1986) 81–106.

[14] L. Breiman, Random forests, Machine learning 45
(2001) 5–32.

[15] Y. Freund, R. E. Schapire, et al., Experiments with
a new boosting algorithm, in: icml, volume 96,
Citeseer, 1996, pp. 148–156.

[16] P. Geurts, D. Ernst, L. Wehenkel, Extremely ran-
domized trees, Machine learning 63 (2006) 3–42.

[17] D. R. Cox, The regression analysis of binary se-
quences, Journal of the Royal Statistical Society
Series B: Statistical Methodology 20 (1958) 215–232.

[18] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
Y. Singer, Online passive aggressive algorithms
(2006).

[19] E. Fix, J. L. Hodges, Discriminatory analysis. non-
parametric discrimination: Consistency proper-
ties, International Statistical Review/Revue Inter-
nationale de Statistique 57 (1989) 238–247.

[20] T. Cover, P. Hart, Nearest neighbor pattern classifi-
cation, IEEE transactions on information theory 13
(1967) 21–27.

[21] R. Tibshirani, T. Hastie, B. Narasimhan, G. Chu,
Diagnosis of multiple cancer types by shrunken
centroids of gene expression, Proceedings of the
National Academy of Sciences 99 (2002) 6567–6572.

[22] M. Quadrini, S. Daberdaku, C. Ferrari, Hierarchical
representation and graph convolutional networks
for the prediction of protein–protein interaction
sites, in: Machine Learning, Optimization, and
Data Science: 6th International Conference, LOD
2020, Siena, Italy, July 19–23, 2020, Revised Selected
Papers, Part II 6, Springer, 2020, pp. 409–420.

[23] M. Quadrini, S. Daberdaku, C. Ferrari, Hierarchi-
cal representation for ppi sites prediction, BMC
bioinformatics 23 (2022) 96.

[24] M. Quadrini, M. Cavallin, S. Daberdaku, C. Ferrari,
Prosps: protein sites prediction based on sequence
fragments, in: International Conference on Ma-
chine Learning, Optimization, and Data Science,
Springer, 2021, pp. 568–580.

[25] M. Quadrini, L. Tesei, E. Merelli, Aspralign: a tool
for the alignment of rna secondary structures with
arbitrary pseudoknots, Bioinformatics 36 (2020)
3578–3579.

[26] M. Quadrini, E. Merelli, R. Piergallini, Loop gram-
mars to identify rna structural patterns., in: Bioin-
formatics, 2019, pp. 302–309.

[27] M. Loreti, M. Quadrini, A spatial logic for simplicial
models, Logical Methods in Computer Science 19
(2023).

http://www.hse.gov.uk/statistics/causdis/-ffstress/index.htm
http://www.hse.gov.uk/statistics/causdis/-ffstress/index.htm

	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Preprocessing
	2.3 Dataset Entry
	2.4 Machine Learning Algorithms
	2.4.1 Decision Tree
	2.4.2 Ensemble models
	2.4.3 Linear Models
	2.4.4 Neighbors-based Models

	2.5 Metrics

	3 Results
	3.1 Methodology
	3.2 Experiments

	4 Conclusions and Future Work

