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Abstract

The application of Artificial Intelligence (AI) techniques for analyzing medical images and omics data is revolutionizing the

healthcare industry by offering profound insights into various diseases. Achieving precise diagnoses and formulating effective

treatment plans, however, demands intricate and multimodal analysis of complex, sensitive, and diverse medical datasets.

Recent advancements in Machine Learning and Deep Learning have proven to be formidable in identifying and classifying

specific diseases. This paper outlines the current projects undertaken by our research group in this innovative domain.
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1. Introduction
The rapid advancement of technology and increased data

availability have positioned Artificial Intelligence (AI) as

a cornerstone in healthcare. AI significantly enhances

patient care, refines treatment protocols, and accelerates

the diagnosis of diverse health conditions. Notably, AI

has advanced medical imaging and omics analysis, re-

fining diagnostic accuracy and personalizing treatment

strategies.

Deep Learning (DL), a subset of AI, excels in analyzing

medical images. Its ability to autonomously identify crit-

ical features and yield accurate interpretations has made

it essential for analyzing complex visual data in medical

imaging modalities such as X-rays, MRI, CT scans, PET,

and ultrasound. These capabilities are crucial for diagnos-

ing complex conditions like cancers, and cardiovascular

and neurological disorders.

However, the assembly of extensive datasets poses sig-

nificant challenges. To address this, Continual Learning

(CL) has emerged as a solution, enabling models to adapt

through ongoing data streams, thus enhancing scalability

and application efficiency resulting in more sustainable
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and less resource-demanding systems [1, 2, 3].

In omics analysis, DL has excelled by exploring the vast

arrays of biological molecules, aiding in disease under-

standing and treatment customization across fields like

genomics, transcriptomics, proteomics, and metabolomics.
Advancements in high-throughput and next-generation

sequencing technologies have fueled significant progress

in functional genomics, especially in understanding

cancer-related genomic factors [4].

Despite the potential, DL models often suffer from a lack

of interpretability, a critical challenge in bioinformat-

ics. The rise of Explainable Artificial Intelligence (XAI)

aims to enhance model transparency and improve fea-

ture selection. Techniques like Shapely Additive exPla-

nations (SHAP) and Gradient-weighted Class Activation

Mapping (Grad-CAM) have become pivotal in demystify-

ing the decisions of Neural Networks (NNs), providing

clearer insights into their predictive mechanisms [5, 6].

This paper, following our previous work [7], outlines

our recent advancements in medical imaging and omics

data analysis, paving the way for an in-depth exploration

of AI’s evolving role in healthcare. The forthcoming

sections discuss medical imaging in Section 2, and omics-

scale data analysis in Section 3.1, concluding with a com-

prehensive overview in Section 5.

2. Medical Imaging and AI

2.1. Vessel segmentation of
cine-angiography

The methodology adopted in this study systematically

enhances the evaluation of vascular complexity in Pe-

ripheral Arterial Occlusive Disease (PAOD) patients

through the integration of advanced imaging segmenta-
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Figure 1: Outcomes from automatic segmentation on two distinct patients are depicted. The figure on the left, Fig. a,
represents the patient with the lowest AUC value across the entire study group, whereas Fig. b on the right displays the
patient with the highest AUC value. Each figure progresses from top to bottom, beginning with the stitched image (i.e., the
grayscale input image), followed by the ground truth segmentation, and concluding with the automatically segmented image.

tion and computational analysis. Utilizing deep learning

techniques, this research successfully transforms cine-

angiography videos into detailed static images, markedly

enhancing the clarity and reliability of vascular assess-

ments. Furthermore, the adoption of fractal dimension as

a quantitative metric for vascular complexity introduces a

novel, objective criterion to the field. This dual approach

not only promises to mitigate the subjectivity inherent

in current diagnostic practices but also establishes a ro-

bust correlation with conventional clinical evaluations,

potentially revolutionizing PAOD management strate-

gies [8]. Incorporating advanced imaging segmentation

and computational analysis, our method significantly re-

fines the assessment of vascular complexity in PAOD pa-

tients. Figure 1 vividly illustrates the segmented vascular

trees from cine-angiography, alongside their correspond-

ing fractal dimension analysis, showcasing the clarity

and precision of our deep learning-based approach. The

study achieved significant findings, demonstrating that

the deep learning-based segmentation method resulted

in an Area Under the Curve mean value of 0.77 ± 0.07,

with a range from 0.57 to 0.87. This method significantly

improved the reliability of visual assessments of vascular

complexity, achieving an Inter-Class Correlation Coeffi-

cient (ICC) of 0.96 for segmented images, compared to

0.76 for video assessments. Additionally, the Fractal Di-

mension (FD) analysis correlated well with clinical scores,

showing coefficients of 0.85 for manually segmented im-

ages and 0.75 for automatically segmented images.

2.2. Segmentation
Semantic segmentation, a process that entails labeling

each pixel of an image with a specific class, represents a

major leap forward within the realm of medical imaging.

This method has been widely adopted for its critical role

in identifying tumors, recognizing various organs, and

classifying different tissue types, proving to be an invalu-

able tool in enhancing diagnostic accuracy and patient

care [9].

2.2.1. Laryngeal Endoscopic Images

In this work, we present a novel approach using deep

learning (DL) for performing semantic segmentation on

laryngeal endoscopy images, building upon the foun-

dations laid by previous research [10, 11]. The dataset

utilized in this study includes 536 color images manually

segmented from in vivo laryngeal examinations, all at a

resolution of 512×512 pixels, originating from two sepa-

rate surgical procedures. These images are categorized

into seven distinct groups: void, vocal folds, other tis-
sue, glottal space, pathology, surgical tool, and intubation.

Our model’s predictive capabilities were significantly

enhanced by leveraging the capabilities of rule-based

languages, especially Answer Set Programming (ASP).

Incorporating ASP allowed us to navigate the neural

network’s (NN) decision-making with greater precision,

applying penalties for inaccuracies grounded in well-

established knowledge. Moreover, rule-based methods

were applied to refine our model’s output, successfully

rectifying minor mistakes, such as single pixels misla-

beled, and adjusting misclassified categories that were

inconsistent with medical guidelines.

In summary, our approach has shown substantial ef-

fectiveness, attaining an average Intersection over Union

(IoU) score above 0.7, a figure significantly improved by

subsequent post-processing strategies.



Figure 2: The proposed algorithm for selecting a subset of genes relevant to classify CLL patients. The input data is used
to compute the genes pairwise correlation matrix (step 1), and the correlation matrix is clustered (step 2) to group similarly
correlated genes. The clusters are then mapped to the original input data and transposed. AEs are trained for each cluster to
select the most representative gene, reducing dimensionality (step 3). The genes are ranked with F-test, selecting a subset with
the highest F-value (step 4). A neural network is trained with a selected set of genes to perform binary classification of the
CLL patients (step 5). The best NNs architecture is determined through model selection, and the SHAP XAI method explains
each gene’s importance in the predictions (step 6).

3. Engineered Data Encoding for
Medical Advancements

In this section, we delve into the innovative intersection

of feature engineering and medicine, focusing on manipu-

lating latent spaces to enable new AI-based solutions. We

explore a series of our works in which we exploit suitably

defined latent spaces to design new gene selection algo-

rithms and Generative AI approaches. In the following,

we will discuss a new algorithm for gene selection and its

application to Chronic Lymphocytic Leukemia (CLL), and

two new generative AI approaches used for automatic

report generation and inverse design of materials and

molecules. Our works not only showcase the potential

of latent spaces in enhancing precision and efficiency in

medical research but also highlight their role in fostering

the development of novel therapeutic strategies, mark-

ing a significant stride toward the future of personalized

medicine.

3.1. AI for Omics Data Analysis
Functional genomics data, particularly GEP datasets, are

crucial in medical science for diagnosis, prevention, and

tailored treatments, yet their analysis is complex due

to three main reasons: (1) course of dimensionality: a

genomics dataset typically consists of a very large num-

ber of genes (features) for a small number of patients

(samples); (2) imbalanced classes: there is often a signifi-

cant difference between the number of instances in each

group of interest; (3) Noise sequencing data are typically

collected from multiple sources, different laboratories,

and sequencing tools resulting in noisy datasets difficult

to analyze.

We proposed a new algorithm for genomic-scale analysis,

based on DL and XAI, whose aim is threefold: first, select

the most meaningful genes for a regression/classifica-

tion problem; second, provide a more accurate prediction

model; third, quantify and evaluate the feature’s contri-

bution to the predictions through XAI [12]. The proposed

algorithm is based on two main ideas: (1) recognize simi-

larly correlated features using clustered correlation ma-

trix and then filter the redundant information for each

group by using Autoencoders (AEs). In contrast with

previous works, where AEs are used for dimensional-

ity reduction [13], we implemented a mechanism to still

work at the level of the original features. We hence pro-

vide a more treatable dataset in terms of dimensionality,



without affecting interpretability; (2) we train NNs and

we iteratively select the most meaningful features using

a new ad-hoc defined XAI score. We eventually use the

set of selected features (from all the iterations) to train

and explain a final model.

We used a preliminary version of this algorithm (depicted

in Figure 2) for the GEP analysis of CLL patients. In our

work [14] we introduced the DeepSHAP Autoencoder

Filter for Genes Selection (DSAF-GS), a deep learning

and explainable AI-based method for gene selection in

genomics-scale data analysis. Through the SHAP explain-

able AI techniques, we identified key genes influencing

CLL prognosis with high accuracy. Our findings pave

the way for more targeted bio-molecular research in CLL,

suggesting novel paths for investigating disease mecha-

nisms and therapy timing.

3.2. Building and Exploring Meaningful
Latent Spaces for Generative AI in
Medicine

Automatic Medical Report Generation via Latent
Space Conditioning and Transformers
In this work, we explore the integration of artificial

intelligence within healthcare, focusing on automatic

medical report generation. We introduce the VAE-GPT

architecture, combining Variational Autoencoder (VAE)

and Generative Pre-trained Transformer (GPT) for

generating medical reports from images. The VAE learns

a latent representation of images, capturing underlying

patterns, while the GPT uses this representation to

generate coherent text. For the purpose the VAE is

jointly trained with a pre-trained text generator (GPT)

and a tags predictor such that images belonging to the

same context (e.g. diseases) are placed in the same

region of the latent space. Furthermore, we propose a

novel metric, Medical Embeddings Attention Distance

(MEAD), to measure the semantic similarity between

generated and reference reports. Our experiments

demonstrate state-of-the-art performance in creating

informative medical reports, highlighting the potential

of AI in enhancing diagnostic processes [15].

GIDnets: Generative Neural Networks for Solving
Inverse Design Problems via Latent Space Explo-
ration
In fields such as Engineering, Molecular Biology, and

Physics, the design of technological tools and device

structures is progressively supported by Inverse Design

methods, providing suggestions on crucial architectural

choices based on the properties that these tools and de-

vices should exhibit. The inverse design problem aims

at designing proper devices according to a set of desired

properties and it is typically an ill-posed problem suf-

fering from the non-uniqueness of the solution where,

moreover, very different devices can share identical prop-

erties. Furthermore, the design spaces are likely high-

dimensional and subjected to feasibility constraints.

Most of the state-of-the-art DL methods for inverse de-

sign share the idea of looking for the design solution by

directly working at the level of the design space; indeed,

they have been mainly conceived to deal with applica-

tions where such a space is a low-dimensional space. By

departing from these approaches, a few works in the

literature have already advocated the benefits of map-

ping the input space into a continuous latent space. This

perspective influenced our work which proposes a neu-

ral network architecture, named GIDnet (Generative

Inverse Design Network), where the suitable solutions

are additionally constrained to the only feasible region of

the latent design space, and an exploration algorithm is

used to end up with more accurate solutions [16]. A thor-

ough experimental activity over several state-of-the-art

benchmark datasets evidenced the superior performance

of GIDnet for inverse design problems.

In a promising future scenario, our approach can be

built using GNNs to generate specific social networks,

molecules, and topological representations starting from

the prior desired properties. Our generative approach, in-

deed, demonstrated breakthrough performances in such

scenarios where the design space is large, discrete, and

constrained, taking into account such feasibility con-

straints during the design process itself.

4. Other Research Activities
This research group has also engaged in a variety of

studies including the impact of a Nutrition Education

Program combined with physical activity on the Mediter-

ranean Diet adherence and inflammatory biomarkers in

adolescents, showing significant improvements [17]. Ad-

ditionally, they have examined the dynamics of opinion

diffusion within social networks, identifying effective

strategies based on centrality measures for influencing

opinion adoption [18]. Furthermore, [19] have proposed

a neuro-symbolic AI approach for the compliance verifi-

cation of electrical control panels in Industry 4.0, utilizing

a combination of deep learning and Answer Set Program-

ming to detect anomalies with limited data. In [20] de-

veloped a Graph Neural Network model to assess lateral

spreading displacement in New Zealand, aiming to en-

hance earthquake impact predictions. In [21] is presented

a statistical framework to learn more effectively from al-

gorithm validation challenges, specifically for medical

image analysis in laparoscopic videos, identifying under-

exposure and motion as significant sources of errors. [22]

introduced a deep learning framework using heatmaps

for disease classification based on gene expression data,



demonstrating its effectiveness in tumor classification.

In [23] detailed a method for reducing and visualizing

data for automatic diagnosis using gene expression and

clinical data, achieving high recall rates in diagnoses.

Lastly, we also developed a system to improve the in-

terpretability of automatic diagnosis by analyzing the

internal decision-making processes of neural networks

[24].

5. Conclusion
This work advances the application of Artificial Intelli-

gence (AI) and Deep Learning (DL) in medical diagnostics

and genomics, demonstrating their transformative po-

tential for enhancing diagnostic accuracy and enabling

personalized medicine. By employing advanced imaging

segmentation, computational analysis, and introducing

fractal dimension as a novel metric for vascular com-

plexity, we offer innovative solutions to the challenges

in medical imaging and omics data analysis. Our find-

ings highlight the effectiveness of these methods in im-

proving the reliability of medical assessments and the

interpretability of complex data through Explainable Ar-

tificial Intelligence (XAI) techniques. The integration of

AI in healthcare, as illustrated by our research, promises

to refine diagnostic processes, optimize treatment plans,

and contribute significantly to the future of personalized

patient care.
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