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Abstract
Artificial Intelligence (AI) encompasses a variety of methods and algorithms that have found applications across numerous
domains over time. The increasing complexity and abundance of data in healthcare have spurred investigations into utilizing
AI techniques within the medical field, leading to promising avenues for fostering innovation, facilitating early diagnosis, and
aiding in treatments. In this study, we provide a concise overview of several initiatives conducted within this realm at the
University of Naples Federico II node of the CINI-AIIS Lab, highlighting their primary objectives and contributions.
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1. Introduction
Artificial intelligence (AI) mimics human intelligence in
machines to carry out tasks involving abstraction and
problem-solving. Among the various sectors influenced
by AI, healthcare stands out as a highly promising field
for its application. Indeed, the integration of AI in health-
care has the potential to aid both patients and healthcare
professionals, revolutionizing patient care and admin-
istrative operations. Additionally, AI-driven platforms
possess the capability to analyze patient data, highlight
potential health issues, and enhance diagnostic preci-
sion for physicians, particularly in scenarios involving
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intricate medical histories or multiple conditions.
AI applications encompass a variety of technologies

rather than being confined to a single one. Among these,
Machine Learning (ML) stands out as a subset of AI, com-
prising algorithms that enable systems to autonomously
learn and enhance their performance through experi-
ence. In the realm of healthcare, traditional ML finds
widespread use, notably in precision medicine, where it
predicts optimal treatment protocols based on patient
attributes and contextual factors.

Deep Learning (DL) is a class of ML algorithms charac-
terized by the use of Artificial Neural Networks (ANNs)
that simulate the structure of the human brain. DL ap-
proaches have gained popularity in pattern recognition
tasks, particularly in image processing, improving med-
ical image analysis. Moreover, in recent years, there
has been a notable surge in interest surrounding the ap-
plication of Large Language Models (LLMs) within the
medical domain. LLMs are advanced natural language
processing (NLP) models trained on massive amounts
of text data, capable of understanding, generating, and
processing human language with remarkable accuracy
and fluency.

In this paper, we will illustrate some of the projects ex-
ploiting AI techniques in the medical field carried out at
the University of Naples Federico II node of the CINI-AIIS
Lab, highlighting their innovative aspects and contribu-
tions.
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2. PIE: a novel paradigm for
medical recommendations

Existing works in the biomedical domain employing
LLMs often overlook the phenomenon of LLM hallu-
cinations [1], which consists in the system generating
responses that are either factually incorrect, nonsensi-
cal, or disconnected from the input prompt. To address
this concern, we introduce a novel paradigm, denoted
as Predict→Interpret→Explain (PIE). This paradigm en-
tails employing a model trained on high-quality and con-
trolled data for predictions, interpreting its internal mech-
anisms using state-of-the-art eXplainable Artificial Intel-
ligence (XAI) techniques, and subsequently utilizing a
pool of LLM-based agents as reasoning engines to con-
vey medical recommendations and the interpretation to
medical professionals. Below, we outline each step in the
PIE pipeline, which we have experimented with in the
context of a medication recommendation downstream
task.
The Predict module exploits the wealth of informa-

tion embedded within Electronic Health Records (EHRs)
derived from the MIMIC-III dataset [2]. We system-
atically analyze both the structured and unstructured
data present in these records to construct heterogeneous
graphs, taking into account the semantic interrelations
among various medical concepts and harnessing intrinsic
correlations within EHR data. Subsequently, a suite of
Graph Neural Networks (GNNs) has been trained for a
link prediction task. This task entails discerning forth-
coming associations between patients and medications.
The Interpret module is pivotal for elucidating the

decision-making process of the GNN model. It consists
in understanding the underlying rationales behind a de-
cision. Interpretation serves as an indispensable tool
bridging the intricate nature of AI models with the hu-
man requisites for transparency and trustworthiness in
decision-making processes. In our study, we evaluated
the efficacy of the Integrated Gradients [3] and GNNEx-
plainer [4] methodologies, both furnishing node weights
that delineate their significance within the predictive
context.

In the Explain module, the outcomes derived from the
previous phases undergo refinement through a pool of
LLM-based collaborative agents, operating in accordance
with a specific protocol. Initially, an internist physician
enlists a panel of specialists (e.g., cardiologists, nephrolo-
gists), tailored to the individual patient’s characteristics.
Each specialist evaluates the patient’s characteristics, the
predictions from the GNN-based model, and the findings
of the Interpret phase to generate a comprehensive as-
sessment, elucidating the justification behind the model’s
prediction. Then, specialists review the reports of their
peers and engage in a discussion that may lead to recon-

sideration of their initial perspectives, thus facilitating
the generation of revised reports. Ultimately, the internist
physician consolidates all reports to produce a unified
summary for the human specialist utilizing the system.

3. AI in Patient Support:
Opportunities and Risks

The capacity of LLMs to interpret and generate natural
language with exceptional understanding and contextual
awareness has paved the way for innovative approaches
to enhancing patient support. One possible application
of LLMs is represented by chatbots, virtual assistants
capable of creating a welcoming communication environ-
ment for patients by providing both emotional support
and informative responses, in a way that is similar to
a human operator. The natural conversational element
and the ability to understand and respond to patients’
needs can contribute to making patients feel comfortable
communicating with a virtual model, even when aware
of its non-human nature. The potential of a model to
emulate authentic human interaction had already been
explored in the past, in the 1960s, when research in nat-
ural language processing led to the development of the
ELIZA system, capable of emulating a Rogerian thera-
pist [5]. The Naples’ CINI AI-IS node had also pioneered
this approach, designing and implementing a chatbot
architecture intended to support patients in performing
pre-screening procedures [6, 7].
With the advent of Large Language Models (LLMs),

this emulation capability is coupled with a remarkable
accuracy of responses. The fact that some studies are
beginning to show a preference for responses provided
by AI models like ChatGPT, in terms of accuracy, nuance,
and even empathy, opens up many interesting possibili-
ties for the future of medicine and healthcare. In a recent
study, some responses from ChatGPT in the medical field
were evaluated as significantly higher quality compared
to those of doctors and more empathetic [8]. This latter
data appears particularly interesting when considering
the potential integration of AI models into healthcare sys-
tems to improve doctors’ responses to patient inquiries
and lighten their workload.

However, this progress also presents significant risks.
Considering only the effect on patients, there is concern
that the widespread use of AI to provide psychological
support may contribute to exacerbating stigma towards
certain categories of patients, especially in the psychiatric
context, relegating them to ”non-human” interactions.
Additionally, there is a risk of eroding trust in traditional
medicine and perceiving healthcare as impersonal, as
well as potentially reducing the responsibility of human
operators in expressing empathy and managing interac-
tions with patients, prompting various reflections on the



areas of overlap between chatbots and human operators.
If the new possibilities offered by AI in the medical field
are manifold, it seems crucial to recognize its limitations
and ensure that these technologies are used ethically and
under the supervision of qualified professionals. Technol-
ogy, as a tool and given its current state of development,
should integrate rather than replace human interaction
in the medical context, ensuring that values such as em-
pathy, clinical judgment, and professional ethics remain
at the centre of healthcare. While the combination of hu-
man expertise and technological advancements promises
to significantly improve healthcare, its success will de-
pend on the ability to effectively balance the skills of
both.

4. ASAD Project
In neuroimaging, Deep Learning (DL) has been widely
used to model chronological age as a function of brain
Magnetic Resonance Imaging (MRI) scans in healthy in-
dividuals with excellent results [9]. The extent to which
a person deviates from healthy brain-ageing trajecto-
ries, expressed as the difference between predicted and
chronological age (brain-predicted age difference, brain-
PAD), has been proposed as an index of structural brain
health, sensitive to brain pathology in a wide spectrum
of neurological disorders [10]. However, the presence of
subject-specific characteristics in different acquisitions
necessitates capturing factors of variation within the tar-
get population. In this project, our aim is to propose
an innovative DL-based model for age, shape, and ap-
pearance disentanglement (ASAD) in brain MRI. This
model will enable a more precise quantification of the
impact of pathologies on the brain, significantly enhanc-
ing the analysis of the brain-PAD. We will employ an
Autoencoder architecture consisting of an Encoder to
define three latent representations for age, shape, and
appearance, respectively. Additionally, a Regressor will
be utilized to compute the predicted age, along with a
set of three decoders: Da, Ds, and Dt. Specifically, Da
and Ds will extract the texture (appearance) and the de-
formation field (shape component), respectively, while
Dt will consider the age-specific latent representation
to provide an age-specific template. Following a similar
approach as proposed in [11], the ASAD architecture will
be trained to reconstruct the input from the disentan-
gled components, using only data from healthy controls
with varying age ranges. This enables the network to
model a healthy brain-aging trajectory. Subsequently,
the architecture will be applied to heterogeneous patient
populations encompassing a wide spectrum of neurolog-
ical disorders. This application aims to detect disease-
specific characteristics within the disentangled compo-
nents. The disentanglement of age, shape, and appear-

ance may have several clinical applications, providing
deep insights into patient-specific brain characteristics.
Indeed, the network’s ability to predict the subject’s age
allows for the evaluation of brain-PAD as a biomarker for
a range of neurological diseases, including Multiple Scle-
rosis, Alzheimer’s disease, and schizophrenia. Moreover,
the decomposition of brainMRI into its main components
of shape and appearance enables the assessment of how
a specific subject deviates from an age-specific standard
template. When applied to a population of patients with
neurological diseases, we expect that the deformation
field will capture disease-specific characteristics such as
atrophy, while the texture component may be useful for
lesion detection. Finally, the ability to disentangle age-
related features provides the architecture with generative
capacity, allowing for longitudinal evaluation obtained
by varying the age-specific latent representation

5. Dementia Severity Assessment
with Incomplete Multimodal
Data

Alzheimer’s disease (AD) is the most common cause of
dementia, affecting millions of elderly people around the
world. AD is a neurodegenerative disorder, and early
detection is a key element to improve the quality of life
of affected patients and their families. In clinical trials,
Magnetic Resonance Imaging (MRI) and Positron Emis-
sion Tomography (PET) are mostly used for the early
diagnosis of neurodegenerative disorders since they pro-
vide volumetric and metabolic function information of
the brain, respectively.
There is the need of combining information from hetero-
geneous and complementary sources, such as MRI and
PET, to evaluate the structural and metabolic character-
istics of the brain. This makes the Multimodal Learning
well suited in the case of dementia assessment. Tech-
niques for multimodal data fusion can be categorized
into early, intermediate, and late fusion. Early fusion in-
tegratesmultiple sources of data into a single features vec-
tor, before being used as input to a learning model. Late
fusion, also referred as decision-level fusion, combines
according to a given rule the decisions frommultiple clas-
sifiers, each trained on separate modalities. Intermediate
fusion, also named as joint learning, exploits the deep
neural networks to transform raw inputs into higher-
level and shared representations, which are constructed,
for instance, by merging into a single layer, units coming
from multiple modality-specific paths. However, when
working with a multimodal dataset in the medical field, it
is not easy to have images of all the involved modalities,
belonging to the same patient. For each subject, paired
acquisition consists of images coming from all the differ-



ent sources and collected at the same time or in a specific
range. In a real scenario, patients may have incomplete
acquisitions, in which some modalities are missed.
In the work proposed in [12], we conducted a systematic
analysis of early, late and joint approaches in fusion for
dementia severity assessment on the publicly available
OASIS-3 dataset [13]. We focused on 3D Convolutional
Neural Network (CNN) to exploit the volumetric features
of the involved images, including in the training step
strategies to handle a high imbalance and incomplete
dataset. In particular, we analyzed the effects of the in-
complete dataset in each multimodal fusion technique,
and in the case of intermediate fusion, we proposed a
Multiple Input - Multi Output 3D CNN whose training
iteration changes according to the characteristics of the
input volumes. To further assess the generalization abil-
ity of the implemented methodology, we are including
the ADNI dataset [14], a study consisting of about 2500
subjects and focusing on the progression of mild cogni-
tive impairment and early AD [15].

6. Data-Centric AI for Healthcare
In the age of digital transformation, healthcare is rapidly
evolving into a data-driven ecosystem. Imagine a health-
care system where patient records are seamlessly inter-
connected, diagnosis is made with unprecedented pre-
cision, and treatments are tailored in real time. Data-
centric architectures are the key to unlocking this vision-
ary healthcare landscape. The transition from a model-
centric approach to AI to a data-centric one signifies a
shift in emphasis when it comes to creating and imple-
menting AI systems. Model-centric AI aims at producing
the best model for a given dataset, whereas data-centric
AI aims at systematically and algorithmically producing
the best dataset to feed a given ML model.

Current challenges and limitations in health data gov-
ernance have demonstrated the need for a real digital
transformation of healthcare, where decisions are made
based on data, whether it is patient history, laboratory
results, or imaging data. AI algorithms can assist in iden-
tifying high-risk patients, predicting treatment outcomes,
and enabling personalized medicine. Nevertheless, ensur-
ing patient data security, AI algorithm accountability, and
transparency are crucial to address privacy, security, and
bias concerns. Emerging technologies, such as Extended
reality (XR) and blockchains, are being already used for
improving patient care and guarantee the security and
privacy of the data. In this context, the data-centric man-
ifesto serves as a beacon for the healthcare community.
Collaboration among clinicians, healthcare organizations,
and technology vendors is indispensable in implement-
ing a data-centric approach to coalesce around a common
vision, and to ensure that all relevant data is considered

Figure 1: Use case: Data-centric approach for digital health
transformation

when making decisions, leading to better outcomes for
patients. This requires three fundamental steps: inte-
grate, open, innovate: use interoperability standards to
integrate existing systems and data. Storing data in an
open, vendor-neutral format will then enable ecosystems
of vendors to innovate. Real use cases of data-centric
architectures for healthcare, such as the one proposed
at Karolinska University Hospital, have been already de-
veloped (see Figure 1). The adoption of standards like
OpenEHR, FHIR, HL7, and ontologies like Snomed CT
represent the technical foundations upon which this vi-
sion can be realized to achieve semantic and structural
interoperability in personal health data, that is to ensure
high data quality.

7. UNet-based multi-class nuclei
segmentation

In recent years, the application of AI in Healthcare is
increasingly stimulating researchers interests [16, 17].
Nuclei panoptic segmentation, i.e., the simultaneous de-
tection, segmentation, and classification of nuclear in-
stances, is at the core of the automation of several tasks in
digital pathology, particularly in the analysis of routine
Hematoxylin and Eosin (H&E) stained histology slides.
Distillation Framework. In our framework, we adopt
an offline technique using HoVerNet as a pre-trained
teacher network. Given that HoVerNet performs nuclei
instance segmentation and classification through three
branches, our distillation strategy is based on the idea of
combining all output branches of HoVerNet into a single
branch network. Note that we aim to train a student that
can replace only the HoVerNet backbone, not its post-
processing steps, which we left unvaried. We employ
a single-branch UNet as our student model and join all
HoVerNet branch outputs into a single branch with a
number of output channels equal to the total number
of HoVerNet’s branches. In particular, we used a Mix
Vision Transformer (MixViT) as the backbone for UNet,



resulting in the best combination based on our experi-
ments. Our loss is a linear combination of the student
loss between the student and the ground truth and the
distillation loss between the student and the teacher reg-
ulated by 𝛼 parameter.
In this work we used two datasets, namely PanNuke [18]
for training HoVer-UNet and CoNSeP [19] for validating
results on external data. In the case of PanNuke dataset,
our solution achieved comparable performance to HoV-
erNet, demonstrating a significant advantage in terms of
processing speed. When the CoNSeP dataset is consid-
ered, the results showed that our solution outperforms
HoVerNet in terms of panoptic quality, though it falls
short in terms of F-score detection. Regarding classifica-
tion metrics, our solution outperforms HoVerNet across
neoplastic and epithelial nuclei; it is practically equal for
miscellaneous and worse for inflammatory. Lastly, the
inference time is about three times lower.
Figure 2 shows visual examples of the results of HoV-

erNet and HoVer-UNet compared with the CoNSeP refer-
ence standard. Overall, the similarity between the results
supports the practical effectiveness of our approach.

OursHoVerNetGround Truth OursHoVerNetGround Truth

Neoplastic Inflammatory Epithelial Miscellaneous

Figure 2: Nuclei segmentation and classification comparison
between CoNSeP ground truth, HoVerNet, and our predic-
tions.

8. Infantile Predictors of
Functional Gastrointestinal
Disorders

Functional Gastrointestinal Disorders (FGIDs) are a sig-
nificant challenge in pediatric healthcare due to their
prevalence and impact on infants. FGIDs refer to a range
of conditions, including infant colic, regurgitation, func-
tional diarrhea, and functional constipation, that are de-
fined by the absence of identifiable biochemical or struc-

tural anomalies. These conditions affect almost 50% of
infants in their first year of life [20]

This study examines the considerable impact of FGIDs
on children, their families and healthcare systems, and
highlights the historic challenge of identifying children at
risk due to unclear pathophysiology. The research aims
to identify early-life risk factors for FGIDs [21], within
the first year of life. Using a prospective observational
cohort design, the study enrolled term and preterm in-
fants from a tertiary care university hospital in Foggia,
Italy, between 1 January 2020 and 31 December 2022,
excluding infants with severe disease or major neonatal
complications. By using conventional statistical methods
and Machine Learning (ML), this study identified birth
weight, cord blood pH, and maternal age as significant
predictors for FGIDs. A logistic regression predictive
model also established an inverse relationship between
these variables and the occurrence of FGIDs. Using these
findings, the study created a ML-based predictive model
and a practical, user-friendly web interface for risk as-
sessment. This enables clinicians to identify infants at a
higher risk for FGIDs. The approach marks a pioneering
step in FGID risk prediction.
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