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Abstract
Advancements in generative artificial intelligence (AI) are setting the stage for transformative changes in medical imaging,
particularly through the development of the Virtual Scanner. This innovative approach leverages resilient generative AI to
synthesize radiological images, addressing critical challenges in the field such as data scarcity, patient exposure to radiation,
and the limitations of current imaging technologies. By harnessing the power of Generative Adversarial Networks (GANs)
and focusing on the resilience of these algorithms, the Virtual Scanner aims to enhance diagnostic accuracy, improve patient
care, and fill gaps in multimodal datasets. Our research explores both unimodal and multimodal techniques, including
GAN ensembles, latent augmentation, and advanced texture synthesis, to create robust and adaptable generative models.
Through extensive experimentation and analysis, we demonstrate the potential of the Virtual Scanner to revolutionize medical
diagnostics by providing a safer, more efficient, and comprehensive imaging solution. The implications of this work extend
beyond immediate medical applications, offering insights into the development of AI technologies capable of navigating the
complexities of real-world data.
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1. Introduction
In recent years, the intersection of artificial intelligence
(AI) and healthcare has opened up novel possibilities for
enhancing diagnostic accuracy, optimizing patient care,
and tailoring treatment plans towards precision medicine.
One of the most promising developments in this domain
is the concept of the Medical Digital Twin, a virtual repre-
sentation of a patient’s health status, enabling personal-
ized medical interventions and predictive healthcare ana-
lytics. Central to the utility and effectiveness of Medical
Digital Twins is the capability for detailed and accurate
radiological imaging, which provides a window into the
internal workings of the human body without invasive
procedures.

Radiological imaging, encompassing a range of modal-
ities such as X-rays, MRI, and CT scans, plays a pivotal
role in the diagnosis, monitoring, and treatment planning
for a myriad of health conditions. However, the acquisi-
tion of these images often requires patients to undergo
multiple scans, exposing them to potential risks associ-
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ated with radiation and contrast agents. Furthermore,
the reliance on comprehensive multimodal imaging data
presents challenges in scenarios where certain modalities
are unavailable or unsuitable for some patients, leading
to gaps in the data that can hinder diagnostic processes
and the development of AI models in healthcare [1, 2, 3].
The advancement of generative AI, particularly

through the deployment of Generative Adversarial Net-
works (GANs), offers a novel solution to these challenges.
By enabling the virtual generation of radiological images
where real ones are unavailable or undesirable, AI not
only mitigates the risks to patients but also bridges the
data gaps in multimodal learning applications [4, 5, 6].
We introduce the concept of the Virtual Scanner as a cor-
nerstone of the Medical Digital Twin paradigm, aiming to
revolutionize the field of radiology by synthesizing high-
fidelity, modality-specific images through the power of
AI, thus enhancing patient care and supporting radiolo-
gists in delivering more accurate diagnoses.
The scarcity of comprehensive radiological images

presents significant challenges in medical diagnostics,
affecting the efficacy of diagnostic processes and the de-
velopment of AI tools. This scarcity arises from limited
access to advanced imaging technologies, concerns over
radiation exposure, and the difficulty of compiling di-
verse, multimodal datasets. Such challenges hinder the
creation of effective AI models for diagnostics, impacting
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their accuracy and real-world applicability. The Virtual
Scanner, leveraging resilient generative AI algorithms,
addresses these issues by synthesizing radiological im-
ages to fill dataset gaps and reduce the need for repeated
scans. Resilient generative AI refers to the development
of models that not only excel in their designated tasks un-
der ideal conditions but also maintain their performance
when confronted with data that deviate from the norm,
known as “data in the wild”. Such resilience is crucial in
ensuring that the AI tools developed for medical imag-
ing are robust against the variations inherent in patient
data across different demographics, equipment used, and
pathological conditions.

By embedding resilience at the core of our generative
AI algorithms, we aim to create a foundation for the Vir-
tual Scanner that is not only technologically advanced
but also reliable and effective across the spectrum of med-
ical imaging needs. This approach positions our work
not just as a technical achievement but as a meaningful
contribution to the field of radiology, where the capac-
ity to handle data in the wild can significantly enhance
diagnostic processes and patient care.

2. Research Activities
Embarking on the journey to realize the Virtual Scanner,
our investigation delves into a series of research activ-
ities, as shown in Figure 1, each designed to push the
boundaries of what’s possible with generative AI in the
field of radiology [7, 8]. These activities are categorized
into two main areas: “Resilient Generative AI” and “Vir-
tual Scanner Applications”, enveloping a diverse array of
methodologies and applications aimed at enhancing the
generation and translation of medical imaging data. By
addressing many aspects of generative AI, from improv-
ing algorithm resilience to creating virtual modalities,
these activities underscore our commitment to advancing
diagnostic capabilities and patient care through techno-
logical innovation.

2.1. Resilient Generative AI
2.1.1. GAN Ensemble

In tackling the complexities of synthetic data generation
within medical imaging, our research delves into opti-
mizing generative AI through the use of GAN ensembles.
This strategy is born from the necessity to overcome
inherent limitations in single-model GAN applications,
such as mode collapse and the inadequate representation
of real data distributions, a common obstacle in generat-
ing high-quality and diverse medical images. The core
of our approach lies in creating an ensemble of GANs
that jointly optimizes the visual quality and diversity of
synthetic images from a set of GANs. We aim to solve a

Pareto multi-objective optimization problem that simul-
taneously covers the real training set, aiming to generate
high-quality GANs and using as few GANs as possible.

We tested out methodology across three distinct med-
ical datasets, employing 22 GANs with differing archi-
tectures, loss functions, and regularization techniques.
Moreover, we uniformly sampled each model every 20000
training iterations, i.e., resulting in a total search space
of 110 models. The experiments showcase that using
synthetic datasets generated from such an ensemble im-
proves the performances in classification downstream
tasks compared to single GANs and Naive selection ap-
proaches, i.e., using all available 110 GANs or randomly
selecting a subset.

2.1.2. LatentAugment

Data Augmentation (DA) is a crucial strategy in AI to
enhance the volume and diversity of training datasets,
thereby mitigating the risk of overfitting and bolstering
model generalization to unseen data. Standard DA meth-
ods in image recognition tasks transform the images via
geometric rigid and non-rigid transformations using im-
age processing primitives, such as translation, rotation,
cropping, etc. However, such transformations rely on
human experts with prior knowledge of the dataset and
fail to generate sufficiently diverse synthetic data. GANs
offer a valuable addition to the available augmentation
techniques. However, GANs generate high-quality sam-
ples rapidly, but they suffer from poor mode coverage,
i.e., the variation and variety of the samples that can be
generated, limiting their utility for DA purposes in the
medical field.
We propose LatentAugment [9], a DA strategy that

overcomes the low diversity of GANs, opening up for use
in DA applications. LatentAugment addresses the three-
fold challenge of producing synthetic samples that are
not only of high fidelity and quality but also diverse and
rapidly generated. LatentAugment modifies the latent
vectors of the real training set, moving them towards
regions that maximize their diversity and fidelity. We
applied LatentAugment to improve the performances
of a downstream model performing of MRI-to-CT im-
age translation. The results showed LatentAugment’s
superiority over common DA methods and naive GAN-
sampling, i.e., creating data sampling from the GAN’s
latent space without any control.

2.1.3. Paired vs. Unpaired Image Translation

Image-to-Image translation in medical imaging presents
a critical challenge due to the predominance of un-
paired datasets, where the direct correspondence be-
tween source and target images is not established [10].
While paired methods, e.g., Pix2Pix, rely on direct map-
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Figure 1: Overview of the presented research activities.

pings between paired images, unpaired techniques, e.g.,
CycleGAN, offer flexibility by ignoring this requirement.
Given the logistical and ethical complexities in acquiring
paired medical images, unpaired models have gained sig-
nificant attention despite the potential compromises in
performance attributed to training instability and vari-
able outcomes.
Our work introduces a novel approach to narrow the

performance drop between paired and unpaired image

translation methodologies. By integrating a novel paired
virtual loss function into the unpaired CycleGAN frame-
work, we enhance the stability and accuracy of unpaired
image translation without necessitating direct image
pairs. This innovation finds practical application in Low-
Dose Computed Tomography (LDCT) denoising, a pro-
cess aimed at reducing radiation exposure while main-
taining image quality. Through this approach, we lever-
age the abundance of unpaired LDCT and Full-Dose CT



(FDCT) images to validate our model, demonstrating its
effectiveness in producing high-quality, denoised images
that closely approximate FDCT standards, thereby mit-
igating health risks associated with radiation without
compromising diagnostic integrity.

2.1.4. Homogenization

In the domain of lung CT imaging, the heterogeneity of
images stemming from varied scanners and reconstruc-
tion kernels poses a significant challenge. This variability
can severely impact the performance of automated anal-
ysis tools, notably in tasks relying on deep learning mod-
els such as 3D Convolutional Neural Networks (CNNs),
which are crucial for predicting patient outcomes like
overall survival rates. To address this challenge, our work
introduces an innovative approach based on StarGAN,
a state-of-the-art image-to-image translation generative
model, for the homogenization of lung CT images.

Our objective is to transform disparate lung CT images,
regardless of their originating scanner types or recon-
struction kernels, into a standardized format that retains
critical diagnostic features while presenting a uniform
appearance. By employing StarGAN, we leverage its ca-
pacity for multi-domain image translation to achieve the
goal of not only enhancing the quality of the dataset but
also to significantly improve the performance of down-
stream tasks. This approach paves the way for more
generalized and robust AI tools in medical diagnostics,
ultimately contributing to better patient care and out-
comes.

2.2. Virtual Scanner Applications
2.2.1. Virtual Contrast Enhancement (VCE)

In the evolving landscape of medical imaging, Contrast
Enhanced Spectral Mammography (CESM) represents a
significant advancement, offering detailed insights for
breast cancer diagnosis by utilizing a dual-energy tech-
nique that integrates both low and high-energy images.
This method, however, necessitates the administration
of an iodinated contrast medium and subjects patients to
higher radiation doses than standardmammography, rais-
ing concerns about potential side effects and increased
radiation exposure.
Addressing these critical limitations, our work intro-

duces a novel approach to VCE in CESM using deep gen-
erative models [11]. By eliminating the need for contrast
mediums and aiming to reduce radiation doses, this re-
search not only mitigates the associated risks but also
preserves the diagnostic benefits of CESM. Our method-
ology employs GAN, e.g., Pix2Pix or CycleGAN, to gener-
ate synthetic recombined images from solely low-energy
images.

An extensive quantitative and qualitative analysis un-
derpins our research, including evaluations by profes-
sional radiologists on a novel CESM dataset comprising
1,138 images. This dataset has been made publicly avail-
able to foster ongoing research and development in the
field. Among the models tested, CycleGAN emerged
as the most effective, showcasing its ability to produce
high-quality synthetic recombined images that closely
mimic those obtained with traditional contrast-enhanced
techniques.

2.2.2. Virtual Treatment Planning in Lung Cancer

Monitoring the progression and response to therapy is
fundamental in lung cancer treatment. Traditional ap-
proaches rely on a series of CT scans taken before and
during treatment to evaluate the efficacy of the inter-
ventions. In our previous work [12], we developed an
ODE-based Digital Twin by using patient-specific CT
scans to train a deep reinforcement learning controller,
which can adapt to different tissue aggressiveness and
outperform the current radiotherapy clinical practice of
uniform dose delivery. However, this methodology often
exposes patients to additional radiation and can be logis-
tically challenging. Our innovative research introduces
a novel application of AI in virtual treatment planning,
leveraging conditioned CycleGANs to simulate the po-
tential progression of lung cancer treatment based on
varying doses. By conditioning the CycleGAN on spe-
cific treatment doses, our model can generate virtual CT
scans that predict how the patient’s anatomy and the
tumor itself might respond to different levels of treat-
ment. This approach allows for the creation of a virtual
time series of CT scans without the need for repeated
radiation exposure. The ability to accurately forecast the
treatment’s progression through these synthetic scans
offers a significant advantage in personalizing treatment
plans, enabling more precise adjustments to therapy reg-
imens based on predicted outcomes. By reducing the
reliance on multiple physical CT scans and minimizing
patient exposure to radiation, we pave the way for a more
patient-centric approach to cancer treatment monitor-
ing. Additionally, the predictive insights gained from this
technology could significantly enhance decision-making
processes in treatment planning, potentially improving
patient outcomes in lung cancer care.

2.2.3. Whole-Body Translation from CT to PET

The integration of CT and PET scans is essential in onco-
logical diagnostics, combining the structural clarity of CT
with the metabolic insights of PET imaging. While CT
scans provide detailed anatomical structure, PET scans of-
fer a window into the metabolic activity within the body,
making the combined PET/CT an invaluable tool in the



diagnosis, staging, and management of cancer patients.
Despite their clinical significance, the dual-modality ap-
proach of PET/CT scanning is not without drawbacks,
e.g., additional radiation exposure and higher costs com-
pared to CT-only scans. These limitations restrict the
widespread availability of PET/CT imaging in numerous
medical centers globally, underscoring the need for alter-
native methods that can replicate the integrative insights
of PET/CT imaging while mitigating its drawbacks.

Recognizing the challenges inherent in translating CT
images to PET, especially given the variability in trans-
lation effectiveness across different anatomical regions,
our methodology introduces a district-specific approach.
Drawing from the current literature, which suggests the
potential for improved accuracy through organ-specific
networks, we propose a novel strategy that segments
whole-body images into four major anatomical districts.
Each district is then processed through independently
trained GANs to generate district-specific PET images.
The final step involves stitching these district-specific
PET images together to reconstruct a comprehensive
whole-body PET scan.

Employing two GAN architectures, Pix2Pix and Cy-
cleGAN, our approach facilitates a comparative analysis
to evaluate the effectiveness and precision of the im-
age translation process. Through standard evaluation
metrics, we quantify the quality of the generated im-
ages, highlighting the advantages of our district-specific
translation methodology over traditional approaches that
rely on a single GAN trained on entire whole-body im-
ages. This innovative strategy not only promises to re-
duce the time, cost, and radiation exposure associated
with PET/CT imaging but also offers a tailored approach
that accounts for the unique characteristics of different
anatomical regions.

2.2.4. Texture Loss

In the quest to enhance the quality of medical images
through denoising, the application of GANs emerges as
a promising task. Yet, a critical challenge lies in the
GAN-based algorithms’ capacity to accurately capture
and replicate the intricate textural details inherent in
medical images. This task’s complexity is significantly
amplified by the diverse and complex relationships that
define image textures, making conventional denoising
approaches inadequate for preserving or restoring fine-
grained textural fidelity.
Our research introduces a novel loss function tai-

lored to address these limitations by exploiting the multi-
scale textural properties captured by the Gray-Level Co-
occurrenceMatrix (GLCM) [13]. The GLCM, traditionally
utilized in image processing to quantify texture, is rede-
fined in our work as a differentiable module compatible
with the gradient-based optimization of the GAN train-

ing processes. By integrating a multi-scale, differentiable
GLCM into the loss function, we facilitate a deeper under-
standing and recognition of complex textural information
during the image generation phase.

Furthermore, the incorporation of a self-attention layer
represents a pivotal innovation in our methodology, en-
abling the dynamic synthesis of texture information
across various scales. This approach not only enhances
the denoising capabilities of GANs but also ensures the
preservation of essential textural details, thereby improv-
ing the diagnostic utility of the generated images.
Extensive experimental validation of our approach

within the field of low-dose CT denoising, aimed at im-
proving noisy CT scans while minimizing radiation expo-
sure, underscores the efficacy of our proposed solution.
Utilizing three publicly available datasets, including both
simulated and real-world scenarios, our methodology
demonstrates a notable improvement over traditional
loss functions across a variety of GAN architectures.

2.2.5. Report Generation

Our work focuses on Automatic Medical Reporting
(AMR) that, as fostered by escalating digitization of
healthcare data and the mounting stress national health-
care systems, aims to produce diagnostic reports from
biomedical data. The efforts are currently directed to-
wards chest radiographs assessing solutions based on
encoder-decoder and transformer-based models. Along-
side all this, Quantum Artificial Intelligence represents
a novel field whose theoretical superiority in data rep-
resentation capabilities and processing speeds makes it
the main technology we are forwarding our efforts to,
with its numerous methodologies for healthcare, even if
it still presents hardware immaturity, scalability issues,
and substantial financial costs. Because its application in
AMR is still unnavigated, we aim to develop an architec-
ture that merges traditional encoder-decoder concepts
with quantum computing, to transcribe features obtained
using classical binary computation into quantum states,
which are then entangled with quantum representations
of the shifted predictions for computational and accuracy
benefits.

3. Future Directions and
Conclusion

As we stand on the verge of a new era in medical imaging,
propelled by the advancements in generative AI, the jour-
ney of our exploration is ongoing. The groundwork laid
by the Virtual Scanner and the development of resilient
generative AI algorithms opens a myriad of pathways for
future research and application. In the quest for further
innovation, it is essential to delve deeper into the integra-



tion of AI with emerging imaging technologies, aiming
to enhance the precision, efficiency, and accessibility of
diagnostic tools. Future research will focus on refining
the algorithms for even greater resilience [14], enabling
them to adapt more seamlessly to the vast diversity of
medical imaging data. Additionally, exploring the poten-
tial for AI-driven predictive analytics in patient treatment
plans presents a promising frontier, where the insights
garnered from virtual scans could inform more person-
alized and effective treatment strategies. Moreover, the
ethical considerations and data privacy concerns asso-
ciated with deploying AI in healthcare require ongoing
attention. Ensuring the security of patient data and the
unbiased application of AI tools remains paramount as
we advance.

In conclusion, the exploration into generative AI and
the Virtual Scanner represents a significant leap toward
revolutionizing medical imaging. As we move forward,
the presented research activities and the technologies
developed will undoubtedly pave the way for a future
where diagnostics aremore accurate, treatments aremore
personalized, and patient care is enhanced at every level.
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