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Abstract
Artificial Intelligence (AI) is transforming industries, particularly through Industry 4.0, by integrating technologies such
as the Internet of Things (IoT) to optimize production processes and resource management. It addresses challenges such
as reducing environmental impact while fulfilling consumer demands. Innovative sensors enable real-time data collection
for environmental monitoring. Adopting advanced technologies such as energy cells, particularly lithium-ion batteries, is
crucial for sustainable mobility and reducing environmental impact in the automotive industry. It is vital to understand the
key parameters of energy cells, including range, energy density, and durability, and implement them while embracing the
principles of Second Life effectively. For example, machine learning (ML) algorithms are utilized in industrial contexts to
identify air and water pollutants and estimate the State of Charge (SoC) for automotive applications. These methodologies
improve efficiency, sustainability, and innovation in various industrial sectors.
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1. Introduction
Artificial Intelligence (AI) is revolutionizing various sec-
tors including healthcare, finance, education, transporta-
tion, and notably, industry. Its capacity to analyze vast
data sets in real-time and generate precise predictive
insights is reshaping production processes, enhancing
resource allocation, and boosting operational efficiency
in industries worldwide. Industry 4.0 [1] represents a
crucial turning point in the evolution of the industrial
landscape, characterized by the integration of advanced
technologies and widespread digitization of production
processes. Inspired by the notion of the ”smart factory,”
it emphasizes the interconnection of machines, systems,
and people via IoT, AI, big data, cloud computing, and
advanced robotics[2, 3, 4]. The concept of Industry 4.0 is
based on the idea of automated and connected production,
where machines and systems communicate with each
other in real-time to optimize processes and decision-
making. In this context, innovative sensors [5, 6] play a
crucial role by enabling the collection of detailed, real-
time data on various environmental and operational pa-
rameters. Using artificial intelligence to analyze and
interpret sensor data offers numerous benefits. By utiliz-
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ing sophisticated algorithms and predictive models, it is
possible to identify pollutants accurately, continuously
monitor air and water quality, and optimize industrial
processes to reduce environmental impacts. However,
the applications of artificial intelligence in industry are
not limited to the environmental sphere. Nowadays, the
automotive industry is facing one of the most significant
challenges in its history: to provide sustainable mobility
and reduce the environmental footprint of transportation
on a global scale. One of the key pillars of this trans-
formation is the energy cell[7]. Energy cells, notably
lithium-ion batteries, are crucial in revolutionizing vehi-
cle energy usage towards zero-emission transportation,
combating air pollution, and mitigating climate change.
However, to fully realize it is essential to have a precise
comprehension of key parameters like range, energy den-
sity, charging time, and durability. Accurate estimation
of these parameters is critical for developing large-scale
zero-emission vehicles and ensuring proper disposal and
reuse, aligning with Second Life principles[8].
The following sections highlight the application of Ma-
chine Learning (ML) in industrial challenges, focusing
on the detection of pollutants in air (2) and water (3), and
on State of Charge estimation in automotive applications
(4).

2. Pollutant Identification in Air
Our recent study proposes a novel system integrating sen-
sor technology and machine learning to detect and clas-
sify air contaminants effectively and affordably. Current
monitoring solutions face size, cost, and complexity is-
sues[9], prompting the development of a more accessible
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solution. Challenges like low sensitivity and selectivity
in miniaturized, low-cost smart solutions are addressed,
with comparisons made to CEN (European Committee
for Standardization) reference instruments, noting lower
accuracy and stability but highlighting their value in data
aggregation[10]. Spatial analysis techniques aid in evalu-
ating pollutant sources, while the limitations of chemical
micro-sensors are extensively discussed in the literature,
along with methodologies to improve their performance.

At the core of our proposed system is a sensor array
including aluminum oxide for broad-spectrum volatile
organic compound detection, a commercial capacitive
humidity sensor, and graphene-functionalized sensor for
pollutant sensitivity. These selections aim for versatil-
ity and sensitivity across contaminant types. Integration
with the SENSIPLUS platform facilitates precise electrical
impedance measurements, crucial for accurate air quality
assessment. The proposed integrated system is shown
in Figure 1 and is mainly composed of the following: (1)
SENSIPLUS Chip (henceforth SPC): a microelectronic
measurement device with on-chip sensing capabilities,
jointly developed by Sensichips s.r.l.[11] and the Depart-
ment of Information Engineering at the University of
Pisa. Equipped with a versatile analog front end and
various internal and external ports, it enables electrical
impedance measurements on both internal and exter-
nal sensors. It has already been adopted in other works,
as in [12, 13, 14]. (2) SENSIPLUS Deep Machine (SDM):
a hardware/software module designed for data acqui-
sition, processing, and analysis. The block diagram in
Figure 2 illustrates the logical flow of operations, high-
lighting the software and hardware components utilized
for each task. Data acquisition is enabled by the SPC API,
a software library in C or Java, operating respectively
on Micro Controller Units (MCUs) and multiple hosts
like Linux/Windows/Android, depending on application
needs. Classification tasks utilize ML techniques like
MLP, CNN, or LSTM, adaptable to run on MCU or more
powerful devices like PCs, depending on computational
requirements.

Figure 1: The proposed integrated system. SDM stands for
SENSIPLUS Deep Machine.

Our methodology involves a structured measurement
protocol to simulate various indoor air quality conditions.
This includes phases of baseline air exposure, controlled
introduction of contaminants, and subsequent recovery,

DATA ACQUISITION

Software: SENSIPLUS API

Hardware: MCU and/or Host

PREPROCESSING

Software: EMA filtering and 

normalization

Hardware: MCU and/or Host

CLASSIFICATION

Software: MLP, CNN or LSTM

Hardware: MCU or Host

Figure 2: The proposed integrated system. SDM stands for
SENSIPLUS Deep Machine.

designed to capture the dynamic nature of indoor air
quality. This methodological approach is crucial for pro-
ducing comprehensive sensor data that reflects the com-
plexities of real-world indoor environments.

For the analytical component of our study, we im-
plemented several machine learning models, including
Multi-Layer Perceptrons (MLP), Convolutional Neural
Networks (CNN), and Long Short-Term Memory (LSTM)
networks. These models were trained on datasets col-
lected from our sensor array, to achieve high accuracy in
classifying different air contaminants. The contaminants
included in our study encompass a range of substances
commonly found in indoor settings, such as acetone, al-
cohol, ammonia, bleach, and various volatile organic
compounds (VOCs), along with controls like water vapor
and clean air to facilitate accurate classification between
polluted and unpolluted conditions.

Our findings indicate that the system can classify air
contaminants with an average accuracy surpassing 75%,
showcasing its potential effectiveness in indoor air qual-
ity assessment. However, classification accuracy varied
among different contaminants, with notable challenges
in distinguishing similar substances like acetone and al-
cohol. This variation underscores the complexities of
air quality monitoring and identifies avenues for future
enhancement.

In evaluating the system’s operational efficiency, we
prioritized minimizing data acquisition times and en-
ergy consumption, optimizing for low-power operations
ideal for IoT applications. This focus ensures the effec-
tiveness and practicality of our solution for real-world
deployment, highlighting the importance of efficiency in
environmental monitoring technologies.

Looking forward, we anticipate several potential en-
hancements to our system. These include integrating
additional sensor types to expand the range of detectable
contaminants, exploring advanced machine learning
models to enhance classification accuracy, and develop-
ing expanded real-time monitoring capabilities. These



Figure 3: CNN Global Confusion Matrix.

efforts aim to further improve the comprehensiveness
and usability of our indoor air quality monitoring system.

In conclusion, our work contributes to environmental
monitoring efforts by demonstrating the feasibility of a
sensor-based and machine-learning-integrated system
for indoor air quality assessment. While promising, our
results also highlight the challenges in air quality moni-
toring and the necessity for continued innovation in this
field. Our study represents a step toward achieving more
accessible, efficient, and accurate air quality monitoring
solutions.

3. Pollutant Identification in Water
Detecting illegal pollutants in wastewater is crucial for
public health and security. An End-to-End IoT-ready
node is proposed for sensing, processing, and transmit-
ting wastewater pollutant data. Utilizing Smart Cable
Water with SENSIPLUS chip sensors, the system employs
impedance spectroscopy to distinguish pollutants from
other substances. Data processing, on a low-cost Micro
Control Unit, involves anomaly detection, classification,
and false positive reduction through machine learning
algorithms.

3.1. Metodology
The identification system, depicted in Figure 4, utilizes
the Smart Cable Water (SCW), an IoT-ready smart sensor
system developed by Sensichips s.r.l. The SCW com-
prises InterDigitated Electrodes (IDEs) and is based on
SENSIPLUS [15]. The system’s objective is to detect sub-
stances in wastewater. However, direct measurements

from sewage drains are impractical due to unreliable con-
ditions and health risks. To address this challenge, Syn-
thetic WasteWater (SWW) is created to simulate sewage
composition. The recipe used to create SWW is inspired
by previous work, and pH adjustments are made to repli-
cate real wastewater conditions. Fourteen substances
have been spilled in the SWW background: (1) Acetic
Acid; (2) Acetone; (3) Ethanol; (4) Ammonia; (5) Formic
Acid; (6) Phosphoric Acid; (7) Sulphuric Acid; (8) Hydro-
gen Peroxide; (9) Synthetic Waste Water; (10) Sodium
Hypochlorite; (11) Sodium Chloride; (12) Dish Wash
Detergent; (13) Wash Machine Detergent; (14) Nelsen.
These substances are divided into two categories: sub-
stances to be identified (group 1) and outlier samples
(group 2) to be excluded by the system. This method
guarantees a safe environment for dataset creation with-
out any biological risks.

Figure 4: Identification system architecture.

To enhance sensitivity to the substances of interest
and the RedOx dynamics, the six IDEs of the SCW were
coated with six different metals: Gold (M1), Copper (M2),
Silver (M3), Nickel (M4), Palladium (M5), and Platinum
(M6). From the resulting sensors, we recorded the resis-
tance measured at a frequency of 78 kHz for the Gold and
Platinum IDEs, while Resistance and Capacitance were
measured at a frequency of 200 Hz for Gold, Platinum,
Silver, and Nickel. This yielded a feature vector com-
prising ten values: six resistance and four capacitance
measurements. Notably, the experimental campaign did
not involve the use of Palladium and Copper IDEs.

3.2. Classification
The classification system consists of two phases: Data
Preprocessing and Classification. In the Data Preprocess-
ing phase, raw sensor data is normalized before being
sorted and evaluated by a Finite State Machine (FSM)
shown in Figure 5. This process determines whether the
data should proceed to the Classification phase.

The Data Preprocessing phase involves normalizing
the raw data from sensors, establishing a robust baseline
signal, and determining whether the normalized sample
should proceed to the anomaly detector or be directly
classified using the FSM.

In real scenarios, distinguishing between substances
of interest and others in the sewerage network is cru-



Figure 5: Identification system architecture.

cial. The primary aim is to determine if the substance
being investigated is of interest, minimizing subjective
evaluations unless specified.

The identification phase involves anomaly detection
andmulticlass classification for precise substance identifi-
cation. Anomaly detection excludes common substances,
focusing on outliers, while classification employs opti-
mized KNN models trained solely on samples of inter-
est. Grid search methods enhance the accuracy of both
anomaly detection and multiclass classification models.

3.3. Results
The study combined anomaly detection with a multi-
class classifier for the final test, as illustrated in Figure 6.
However, the multiclass classifier incorrectly identified
some outlier substances, leading to false positive alarms.
To mitigate this, the anomaly detection system was in-
tegrated before the multiclass classifier. Consequently,
most outlier samples were accurately classified as ’UN-
KNOWN,’ achieving an accuracy rate of 79.4%. Notably,
20.6% of outlier samples, primarily sodium hypochlorite,
were frequently misclassified as hydrogen peroxide.

Figure 6: Entire system results shown as Confusion Matrix.

4. Optimization of Battery State of
Charge Estimation

Accurate monitoring of State of Charge (SoC) is crucial
for tasks like battery life estimation and temperature
control. Existing techniques like Coulomb counting and
Open Circuit Voltage (OCV) face challenges such as mea-
surement errors and the flat relationship between voltage
and SoC in certain battery types like Lithium Iron Phos-
phate (LFP). Electrochemical Impedance Spectroscopy
(EIS) emerges as a promising alternative but suffers from
long measurement times. This work proposes a method
to minimize measurement time while ensuring accurate
SoC estimation, particularly with EIS and knowledge-
based SoC classes.

The proposed approach follows the framework shown
in Figure 1. It starts with the identifying design parame-
ters and constraints, which include: (1) Resolution of SoC
performance estimation, (2) Target measurement time,
(3) Target Accuracy, (4) Battery type, and (5) Classifier.
The second step is to characterize the device under test,

Characterization of
batteries

under test

Constrains Definition

Is the classifier fixed?

Classifier
selection

Feature Selection

Selected Frequencies

NO

YES

Figure 7: The proposed method workflow.

focusing on achieving the most stringent parameters pos-
sible. Then the appropriate classifier from the previous
dataset is evaluated. The chosen classifier, demonstrating
better accuracy, is then integrated into the feature selec-
tion algorithm. The final stage involves feature selection
using search algorithms, aimed at minimizing measure-
ment time while preserving accuracy above the specified
target.

4.1. Metodology
In this example, the State of Charge (SoC) estimation
problem was addressed using 10-class classification mod-
els where each class represents a 10% interval of the SoC.
The initial dataset comprises all available features, includ-
ing 28 impedances (real and imaginary parts) measured



at various frequencies, totaling 56 features collected from
7 different cells. These features represent the Nyquist
plots of battery impedances at different SoCs, as illus-
trated in Figure 8. Performance evaluation metrics used
are described by Grandini et al[16]. The experiments
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Figure 8: ObtainedNyquist plot of a single battery at different
State of Charge.

consistently followed the k-fold method, ensuring opti-
mal dataset utilization by rotating the batteries used. As
a result, six trained models were obtained. Evaluation
metrics confirm that the Support Vector Machine (SVM)
model outperforms others, with a mean accuracy of 0.83
and a standard deviation of 0.04. The resulting confusion
matrix shown in Figure 9 illustrates the performance of
the SVM model. These preliminary classification tests
identify SVM as the most effective ML model among
those considered.

The problem of identifying the optimal set of frequen-
cies for impedance measurement via EIS for battery SoC
estimation has been addressed using optimization algo-
rithms as search strategies, specifically Particle Swarm
Optimization (PSO) [17]. A fitness function is imple-
mented based on a supervised learning model 1, aiming
to balance accuracy in SoC estimation and measurement
time. The parameter 2 represents the ratio of correct pre-
dictions (CP) to total predictions (TP), while parameter
3 is inversely related to measurement duration. Mea-
surement time (𝑇𝑚𝑒𝑎𝑠) is computed as the sum of selected
feature durations, with 𝑇𝑚𝑎𝑥 related to the use of all fea-
tures. Parameters 𝐴 and 𝐵 range from 0 to 1, with 𝛼
serving as a weight coefficient between accuracy and
time contributions.

𝑆 = 𝛼 ⋅ 𝐴 + (1 − 𝛼) ⋅ 𝐵 (1)

𝐴 = 𝐶𝑃
𝑇𝑃

(2)

𝐵 = 1 −
𝑇𝑚𝑒𝑎𝑠
𝑇𝑚𝑎𝑥

(3)

4.2. Results
This case study establishes a target accuracy of 0.95, re-
gardless of measurement time. Figure 10 shows the max-
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imum Accuracy achieved over 50 runs, correlating with
the α weight coefficient, while considering measurement
time. The blue star indicates the solution with the highest
Accuracy. The band represents SoC estimation Accuracy
considering all features with the SVM classifier,showing
a trade-off between accuracy and measurement time opti-
mization, where higher 𝛼 values prioritize accuracy over
time.
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