
An MLOps Solution Framework for Transitioning Machine
Learning Models into eHealth Systems
Andrea Basile, Fabio Calefato, Filippo Lanubile∗, Giulio Mallardi and Luigi Quaranta

Dept. of Computer Science, University of Bari, Via Edoardo Orabona 4, 70125 Bari BA, Italy

Abstract
Over the past few years, there has been a growing experimentation of machine learning (ML)-based technologies in the
healthcare domain. However, most related initiatives struggle to progress beyond the prototypical research stage and transition
to clinical use. Although this problem affects the adoption of ML across all industries, it is largely exacerbated in the highly
regulated medical domain. Lately, MLOps has emerged as a new discipline encompassing practices and tools to streamline
the development and maintenance of ML-enabled systems. Rooted in software engineering and inspired by DevOps, it places
great emphasis on the automation of ML pipelines and model lifecycle. In this paper, we present an MLOps-based solution
framework designed to streamline the transition of experimental ML models to production-ready components for eHealth
systems. Our approach is designed to support the reliable integration and clinical deployment of ML-enabled tools that can
assist healthcare professionals. The solution framework is being developed and validated in the context of “DARE – Digital
Lifelong Prevention”, an Italian research project aimed at leveraging the potential of data to improve health promotion and
prevention throughout the life course.
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1. Introduction
The integration of data-driven artificial intelligence (AI)
into eHealth systems has recently emerged as a promis-
ing avenue to enhance healthcare delivery and improve
patient outcomes [1]. Consequently, in the last few years,
there has been a growing experimentation of healthcare
solutions based on machine learning (ML) and deep learn-
ing (DL). These data-driven AI techniques have already
shown remarkable capabilities in key areas of medicine,
from diagnostics to treatment [2].

However, most research initiatives struggle to progress
beyond the prototypical research stage and transition
to clinical use. On the one hand, the primary focus of
research teams is typically on optimizing the model build-
ing process and advancing the state of the art in terms
of model performance. On the other hand, moving be-
yond experimentation, towards the clinical application of
machine learning, poses significant challenges. These in-
clude ensuring the end-to-end reproducibility and trace-
ability of ML pipelines, verifying the quality of all in-
volved artifacts, and making ML-enabled components
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interoperable. As a result — after the dissemination of
scientific findings—MLmodels typically remain confined
within laboratories and never find practical application.
This precludes a broader societal impact of ML research
in the medical domain, representing a significant disper-
sion of valuable resources and potential.

To address the key challenges hindering the practical
application of ML in the healthcare domain, we propose a
solution framework that integrates a set of best practices
and a selection of software tools for their implementa-
tion. The solution framework is based on MLOps (short
for ‘Machine Learning Operations’), an emerging disci-
pline in the area of AI engineering. Inspired by DevOps,
MLOps places great emphasis on the automation of ML
pipelines and the lifecycle of machine learning models.
Our solution framework is designed to support the

end-to-end process for building and maintaining ML-
enabled components to be integrated into eHealth sys-
tems. On the one hand, it aims to improve the practices
adopted by data scientists in the laboratory. To this aim,
it comprises tools to organize the requirements of an
ML project, ensure the reproducibility and traceability
of ML experiments, and verify the quality of code, data,
and models. On the other hand, it assists the transition
of ML models to production environments. To this aim,
it supports activities such as model API development,
model containerization, deployment, and monitoring. In
all phases, it leverages workflow automation tools to
make the process reproducible and reduce the margin for
human error.
The solution framework described in this paper has

been developed as part of “DARE – Digital Lifelong Pre-
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vention,” an Italian research project aimed at leveraging
the potential of data to improve health promotion and
prevention throughout the life course. We are currently
in the process of validating the benefits of the solution
framework through a few case studies, both within and
outside DARE. In the future, we plan to further extend
the scope of our proposal, by leveraging automation to
support further aspects of ML projects. For instance, we
envision the automated creation of documentation and
validation reports needed to comply with healthcare reg-
ulations and certify the resulting ML-enabled systems as
medical devices.

The remainder of this paper is organized as follows. In
Section 2, we provide a definition of MLOps and report
about existing MLOps experimentation in the healthcare
domain. In Section 3, we introduce the DARE research
project. In Section 4, we provide details about the prac-
tices and tools included in our solution framework. In
Section 5, we outline future research directions and in
Section 6 we conclude the paper.

2. Background

2.1. MLOps definition
MLOps is an umbrella term that encompasses a set of
practices and tools to streamline the creation and main-
tenance of ML-enabled systems. It primarily aims to
automate ML pipelines and workflows, facilitating the
deployment of models into production environments.
The ultimate objective of MLOps is to implement the con-
tinuous integration and deployment of models (CI/CD),
mirroring and extending the DevOps approach used in
conventional software systems.

Kreuzberger et al. provide a comprehensive definition
of MLOps, which they define as “a paradigm, including
aspects like best practices, sets of concepts, as well as a
development culture when it comes to the end-to-end con-
ceptualization, implementation, monitoring, deployment,
and scalability of machine learning products” [3].

With its growing popularity, MLOps is emerging as a
distinct discipline in the area of AI engineering. This is
evidenced by the recent addition of courses on this topic
at some universities [4, 5].

2.2. MLOps in healthcare
The application of data-driven AI in healthcare faces sev-
eral challenges, ranging from regulatory compliance and
data privacy concerns to the interoperability of systems
and the integration of AI-driven insights into clinical
decision-making processes. Additionally, the high-stakes
nature of healthcare demands rigorous validation, mon-
itoring, and interpretability of machine learning mod-

els to ensure patient safety and trust among healthcare
providers.

To address these challenges, an increasing number of
researchers are exploring the use of MLOps to integrate
ML models into eHealth systems. In [6], Granlund et al.
introduce a certified medical software for the risk assess-
ment of joint replacement interventions, exploring the
use of MLOps in a highly regulated context. A similar ef-
fort is reported by Stirbu et al., who present an approach
that leverages pull requests as design controls and applies
it to integrate ML models in certified medical systems [7].
Lombardo et al. leverage a digital twin technology to

provide Location Based Services (LBS) with intelligent
functionalities [8]. In doing so, they leverage MLOps to
facilitate model evolution and adaptation to changes in
the physical world.
To address a similar problem, Toivakka et al. pro-

pose an efficient software delivery model, based on De-
vOps, which ensures compliance with medical device
standards [9]. Specifically, they align medical device soft-
ware regulatory requirements from standards IEC 62304
and IEC 82304-1 into the software delivery pipeline.

3. DARE Project
The DARE project is a wide-ranging initiative funded
by the Italian Ministry of University and Research. It
has fostered the development of a distributed knowl-
edge community dedicated to digital preventive health-
care research. This community encompasses a network
of around 250 researchers from universities, hospitals,
healthcare companies, and other organizations.
The primary goal of the project is to produce the

knowledge and multidisciplinary solutions necessary to
establish Italy as a leading country in digital preven-
tion. Specifically, the project aims to promote preventive
actions enabled by digital technologies and big data to
improve the readiness and accuracy of key public health
tasks such as forecasting, surveillance, early diagnosis,
and response to acute and chronic diseases, including co-
morbidities. A peculiarity of the project is the adoption
of a ‘life-course’ perspective to address health-related
conditions in general.

Ultimately, DARE aims to leverage digital technologies
to bridge social and geographic disparities in access to
integrated health services, benefiting the most vulnerable
segments of the population.

4. MLOps Solution Framework
To support the transition of prototypical ML-based so-
lutions developed within DARE to production-grade
eHealth systems, we have proposed a solution framework
based on state-of-the-art MLOps practices and tools. Our



framework has a general-purpose design and is meant to
support the development and maintenance of a variety
of ML-based eHealth software. However, it can be easily
customized to support specific research initiatives within
DARE and beyond.
In the following paragraphs, we describe the main

ideas behind the solution framework. Specifically, we
report on theMLOps practices encompassed by the frame-
work, as well as the tools that we recommend for their
practical implementation.

Several MLOps tools have been developed so far. Most
of them are commercial solutions, typically integrated
into end-to-end MLOps or cloud-computing platforms.
Open-source options are available as well, and some of
the commercial tools – typically provided as Software-
as-a-Service (SaaS) – are based on an open-source core
which can be independently deployed on-premises. In
our solution framework, we recommend adopting open
source software whenever possible. Not only is it typi-
cally more cost-effective, but it also offers independence
from cloud infrastructures, enabling on-premises deploy-
ments. This is particularly important in the healthcare do-
main, in which hospitals and other research institutions
need to comply with stringent patient data management
requirements, which typically cannot leave the institu-
tion’s computing facilities. In such cases, our MLOps
solution framework can be fully deployed on-premises.

4.1. Scoping the ML Problem
When planning to build an ML-enabled system or com-
ponent, the initial challenge is properly defining the un-
derlying machine learning problem, if one exists. Indeed,
while machine learning offers optimal solutions for a
wide range of problems, it is always crucial to assess
whether using it is sensible and feasible for the specific
problem at hand, considering factors like availability of
labeled data and computing resources.
Inspired by the Business Model Canvas, the Machine

Learning Canvas by Goku Mohandas [10] can serve as
a useful template to facilitate this decision-making pro-
cess. It encourages thinking on both product and system
design aspects, clarifying the motivation, key objectives,
feasibility, and high-level strategy for building the pro-
posed ML-enabled solution.

4.2. Ensuring the Reproducibility and
Traceability of ML Pipelines

Once the basic requirements for the desired product have
been specified, data engineers and data scientists can
start working together to build the ML models that will
power the final product. In doing so, they should take
care of defining a reproducible and traceable pipeline.

Reproducibility is a key requirement for ML pipelines.
It is essential not only for achieving consistent model
performance across production and lab environments
but also for enabling the recovery and timely retraining
of deployed models. Nonetheless, the inherent nondeter-
ministic nature of most ML and DL techniques, coupled
with the complexity of ML pipelines, makes attaining
reproducibility in practice a significant challenge.

Similarly, ensuring the full traceability of model build-
ing processes is of paramount importance. Healthcare
is a safety-critical domain in which decisions can have
life-altering consequences. Thus, for models aimed at
supporting healthcare professionals in decision-making
activities it is essential to be able to trace back any unex-
pected behavior to the model training process, enabling
root cause analysis. This ensures the transparency and
accountability of the overall system. Moreover, traceabil-
ity helps in meeting healthcare regulations.
As a first step towards ensuring the reproducibility

and traceability of ML pipelines, we propose the use of
git as a version control system (VCS) for code artifacts
and of DVC1 as a specialized VCS for data and models. By
adopting these tools in conjunction, it is always possible
to understand which specific version of a dataset and of
a training script were used to build a particular version
of a machine learning model.

A further step towards ensuring the full traceability of
the training process is adopting an experiment tracking
solution. In this regard, we recommend using MLflow,2

a popular open-source platform featuring a dedicated
experiment tracking module (MLflow Tracking). With
MLflow, data scientists can track all relevant details of an
ML experiment, including the training algorithm, the hy-
perparameters, the dataset version, and the selected fea-
tures. Similarly, the metrics selected for model evaluation
can be logged into MLflow, together with any experimen-
tal output. The outcomes of experimental runs can then
be visually compared in a dashboard offered through a
web application. Once the best run has been determined,
the resulting model can be registered in a model registry
within the dedicated MLflow module (MLflow Registry).
If used consistently to register models and update their
status, the model registry becomes the centralized store
of production-grade models and related metadata – i.e.,
if a deployed model is pulled from a model registry, it is
easy to trace back the particular experimental run that
produced it.

1https://dvc.org
2https://mlflow.org

https://dvc.org
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4.3. Fostering Quality Assurance of ML
Artifacts

A major criticism raised by software engineers towards
data scientists concerns the poor code quality of exper-
imental ML artifacts, particularly computational note-
books [11, 12]. Integrating data science tools with static
analyzers and testing utilities could significantly improve
code quality. In this regard, our framework promotes the
adoption of pytest3 as a testing framework and ruff4 as a
static analyzer for Python scripts. Moreover, in projects
that include computational notebooks, we recommend
the use of Pynblint,5 i.e., a specialized linting solution for
Jupyter Notebook documents.
Nonetheless, the quality of ML-enabled systems ex-

tends beyond code and is largely determined by the qual-
ity of data and models. It is widely acknowledged that
model performance can be substantially impacted by the
quality of training data, which often fails to meet ideal
standards in real-world scenarios. Addressing data qual-
ity issues, such as biases, noise, and scarcity, is crucial
to developing reliable and effective ML-enabled systems.
To this aim, our solution framework provides for the use
of Deepchecks,6 a commercial tool with an open-source
core. Deepchecks can be used to test training data for
outliers and other anomalies; moreover, it reveals issues
like the leakage of test data in training datasets.
In addition to assessing performance metrics, the

quality of models can be further evaluated using dedi-
cated testing approaches. Where applicable, our solution
framework recommends the development of behavioral
model tests. Originally proposed by Ribeiro et al. [13],
these tests are designed to ensure specific model capa-
bilities. For instance, in the case of an NLP model, data
scientists might want to verify that the model can handle
negations appropriately. These tests can be implemented
using the same testing framework employed for verifying
code correctness (in our framework, pytest).

4.4. Developing APIs for ML Components
To enable seamless integration of models into larger sys-
tems, they are typically encapsulated within dedicated
APIs. Specifically, given the widespread adoption of mi-
croservices and serverless architectures, which predomi-
nantly rely on the HTTP protocol for inter-component
communication, a common pattern is to expose ML mod-
els through web APIs, using either REST or RPC ap-
proaches. By wrapping models with standardized web
APIs, they can be more easily consumed and orchestrated

3https://docs.pytest.org
4https://docs.astral.sh/ruff/
5https://github.com/collab-uniba/pynblint
6https://deepchecks.com

within distributed architectures, facilitating their deploy-
ment and scalability.

With respect to this, our solution framework endorses
FastAPI,7 a specialized Python framework for developing
OpenAPI-compliant web APIs. By leveraging FastAPI,
data scientists can efficiently build standardized and well-
documented APIs for their ML models, benefiting from
its high performance capabilities and first-class support
for asynchronous code.

4.5. ML Component Delivery
In addition to exposing API endpoints, models must be
packaged in a portable way and automatically deployed
to production environments. To accomplish this, our
MLOps solution framework embraces Infrastructure as
Code (IaC), a well-established DevOps methodology. The
typical approach involves packaging ML models, along
with their web API components, into software containers
leveraging IaC techniques. In our solution framework,
we advocate for the use of Docker,8 which has established
itself as the de facto standard containerization technol-
ogy during the last decade. Using Docker, ML models
can be shipped as immutable and portable software pack-
ages that are consistently reproducible across different
deployment environments. This containerized approach
aligns with modern cloud-native architectures.

Deployed models need to be properly documented. As
a standardized format to consistently document the de-
livered machine learning components, model cards can
be adopted to report essential model attributes. Model
cards are simple Markdown documents describing the
model, its intended uses and potential limitations, in-
cluding biases and ethical considerations, the training
parameters and experimental information, the datasets
used for training, and the model evaluation results. This
type of documentation was first proposed by Mitchell
et al. in [14] and gained popularity through its adoption
by Hugging Face,9 a prominent AI community and ma-
chine learning hub. Beyond model cards, Hugging Face
users typically document the datasets used with Dataset
Cards, which outline basic details about the data as well
as information on how to use the data responsibly (e.g.,
potential biases within the dataset). Dataset cards help
users understand the contents of the dataset and provide
context for how it should be used.
A further step towards the end-to-end automation of

ML pipelines is adopting CI/CD (Continuous Integration/-
Continuous Deployment) solutions for the automated de-
ployment of containerized ML components. Automating
this step of the workflow offers two key benefits: expe-
diting the deployment of model updates and minimizing

7https://fastapi.tiangolo.com
8https://www.docker.com
9https://huggingface.co
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human errors through consistent, rigorous quality as-
surance checks before deployment. Several CI/CD tools
with similar capabilities are currently available. To re-
duce friction in adopting this practice, our framework
recommends leveraging the CI/CD service integrated
with the chosen code hosting platform for sharing Git
repositories, such as GitHub Actions10 for GitHub or Git-
Lab CI/CD11 for GitLab. A notable advantage of GitLab
CI/CD is the ability to deploy the entire code hosting
platform on-premises, which can be beneficial for insti-
tutions with policies prohibiting external code hosting.

4.6. ML Component Monitoring
To ensure the continued availability and performance
of deployed ML-enabled components, continuous moni-
toring is essential. A comprehensive monitoring system
should track both the resource utilization of ML compo-
nents and the performance of the underlying ML models
themselves, as model performance often degrades over
time. Establishing robust monitoring practices main-
tains a crucial feedback loop, enabling ML engineers to
promptly identify and replace underperforming models
as needed.
A wide range of solutions can be leveraged for this

purpose, ranging from general-purpose monitoring tools
like Prometheus,12 Grafana,13 and the ELK stack14 to spe-
cialized software specifically designed for monitoring ML
systems, such as the monitoring module of Deepchecks.
Within our solution framework, we favor the adoption
of the popular open-source stack of Prometheus and
Grafana. Their general-purpose nature allows for setting
up custom monitoring services that holistically track the
overall health of ML components, encompassing resource
utilization metrics as well as ML model performance in-
dicators. Moreover, being open-source, both Prometheus
and Grafana can be seamlessly deployed on-premises
using their official Docker containers, aligning with our
framework’s emphasis on open solutions and on-prem
deployability for healthcare use cases.

5. Future Work
While the proposed MLOps framework lays a robust
foundation for deploying machine learning models in
healthcare, there are still additional issues that require
careful consideration. In particular, the complexity of
security and regulatory requirements in the healthcare
sector poses significant challenges that need to be thor-
oughly addressed.

10https://github.com/features/actions
11https://docs.gitlab.com/ee/ci/
12https://prometheus.io
13https://grafana.com
14https://www.elastic.co/elastic-stack

Accordingly, our future work will prioritize enhancing
the security of the MLOps framework. Robust authenti-
cation, authorization, and encryption protocols will safe-
guard patient data and ensure system integrity through
API security.

In addition, we aim to explore automated report gener-
ation as a means to facilitate compliance with regulatory
bodies and enable efficient auditing processes. By leverag-
ing CI/CD workflows to generate comprehensive reports
and documentation, we expect to streamline compliance
efforts, thereby facilitating the certification of ML models
and ML-enabled eHealth systems as medical devices.

6. Conclusion
The approach presented in this paper represents a
comprehensive and robust framework for the develop-
ment, deployment, and monitoring of ML models within
eHealth systems. By leveraging industry-standard prac-
tices and tools, it addresses the critical aspects of repro-
ducibility, traceability, and quality assurance throughout
the entire machine learning lifecycle.
The approach prioritizes a structured foundation for

coding, emphasizing clear problem statements, data
sources, and evaluation metrics. It integrates version
control and experiment tracking for reproducibility and
collaboration. Rigorous quality assurance is applied to
data and models, ensuring integrity and ethical consider-
ations. MLOps practices streamline deployment for effi-
cient model deployment. Continuous monitoring detects
issues early, fostering reliability and trust in developed
models.
Ultimately, this comprehensive and methodical ap-

proach provides a solid foundation for healthcare or-
ganizations to harness the full potential of artificial in-
telligence while upholding responsible AI principles. It
empowers stakeholders to develop and deploy machine
learning models that are not only accurate and perfor-
mant but also interpretable, ethical, and maintainable
over time, driving innovation and positive impact across
various domains and industries.
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