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Abstract
Software documentation is key for producing high-quality projects and ensuring their smooth evolution. Nonetheless, the
activity of writing software artifacts is time-consuming and effort-prone. Looking at the existing body of knowledge, we
outline limited evidence of how automated approaches may support practitioners when documenting the artifacts produced
throughout the software lifecycle. In particular, there is still a lack of investigations into the capabilities of Large Language
Models (LLMs), which are indeed supposed to be highly beneficial in this respect. In this paper, we propose a preliminary
case study to understand how LLMs can support the development of the documentation of projects developed through a
Waterfall lifecycle. Using ChatGPT, we engineered specific prompts to generate and validate the artifacts produced, taking an
existing, documented software engineering project as an oracle. The main findings of the study show the ability of ChatGPT
to produce most artifacts correctly. In addition, we find that software engineers would require a relatively low effort to adapt
the outputs provided by ChatGPT to their own context, especially for textual artifacts.
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1. Introduction
Integrating Large Language Models (LLMs) into vari-
ous domains has recently garnered significant attention.
Recent statistics indicate that ChatGPT, a prominent ex-
ample of LLM, has gathered over 180 million users, un-
derscoring the widespread adoption of such models [1].
LLMs showcase a remarkable versatility, particularly in
software engineering [2], thus leading practitioners to
wonder how these models can effectively replicate their
tasks. From here, there is a need to explore their potential
within the Software Development Lifecycle (SDLC). In
particular, the literature showed how LLMs can simulate
team members in a development environment, perform
code analysis, generate code, and predict bugs [3]. These
AI-powered systems can analyze large amounts of code
and data quickly and accurately, enabling automation
of repetitive tasks and allowing developers to focus on
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more complex issues [4].
These benefits allowed us to resolve key issues in soft-

ware engineering tasks, especially considering software
development and maintenance activities [5]. However,
other software engineering tasks, especially those related
to documentation, are still defined as key challenges [6].
Since there is a lack of studies in this specific field, we aim
to provide preliminary results to show the capabilities of
an LLM to tackle the challenge of crafting software doc-
umentation. We selected a Waterfall Life Cycle project
to explore LLMs’ documentation abilities across devel-
opment phases, from requirements to technical details.
Through this preliminary case study, we employed Chat-
GPT 1 to generate documentation artifacts.

We aim to evaluate ChatGPT’s real-world efficiency
by comparing it to a benchmark project and gauging the
effort to produce similarly high-quality artifacts. Prelimi-
nary findings suggest ChatGPT eases documentation and
speeds up design replication but requires human input
for response refinement and query tuning. Initial integra-
tion efforts are moderate, but some artifacts necessitated
revised prompts and external software for satisfactory
outcomes.

2. Related Work
Artificial Intelligence for Software Engineering (AI4SE)
is a well-known research area that aims to develop AI

1https://chat.openai.com
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solutions and SE practices to improve software develop-
ment processes and tools [7, 8]. With the emergence and
proliferation of LLMs, this field has encountered new
opportunities to support and streamline the labors of
software engineers and researchers [5].

In the vein of such advancements, De Vito et al. [9]
introduced ECHO, an innovative method utilizing LLMs
to aid software engineers in improving the quality of
UML use cases. Further extending the utility of AI in
SE, De Vito et al. [10] a chatbot designed for software
engineering, streamlining tasks like code review, testing,
and criteria evaluation.

Ahmad et al. [11] explore the role of ChatGPT as a bot
in collaborative software architecting to support the anal-
ysis, synthesis, and evaluation of microservices-based
software. A study by Liang et al. [12] surveyed develop-
ers’ perceptions, noting issues like code not meeting re-
quirements. Despite these advancements, the domain of
AI-assisted documentation in SE remains underexplored,
especially the comprehensive support for the entire doc-
umentation lifecycle.

As Robillard et al. [13] highlighted, traditional docu-
mentation practices are inefficient because of the man-
ual nature of its creation and the gap between creators
and consumers. Aghajani et al. [14] reported that doc-
umentation suffers numerous shortcomings and prob-
lems, including insufficient and inadequate content and
outdated and ambiguous information. Recent investiga-
tions have further explored the extent to which LLMs
can assist in tasks like writing code [15], conducting code
reviews [16], providing code explanations [17], and teach-
ing programming concepts [18]. These studies suggest
the potentiality of LLMs to create significant support in
the activities involved in the SDLC and focus the human
effort on the quality and relevance of the results.

White et al. [19] emphasized the importance of prompt
engineering to guide LLMs by presenting a catalog of
patterns to dialogue with LLMs to achieve satisfactory
outputs. A well-written prompt enables correct answers
by minimizing prompts [20, 21, 22]. Our work builds on
these studies, exploiting how to use prompts to support
documentation artifacts.

Our research is motivated by the goal of comprehen-
sively understanding how ChatGPT can support both stu-
dents and practitioners during the software development
lifecycle, focusing on creating improved documentation
of software systems. We aim to shed light on the role
of ChatGPT and LLMs in simplifying the development
process and assess the complexities involved in using
ChatGPT to produce high-quality results.

3. Research Method
The goal of the study was to determine to what extent
LLMs can support the activities of a software engineer
when writing documentation in a software project em-
ploying the Waterfall Life Cycle model, with the purpose
of providing software engineers elements that can be
leveraged to support and improve the design process of
software projects. The perspective is of both researchers
and practitioners. The former are interested in under-
standing the current potential and limitations of using
LLMs for documentation tasks, possibly identifying op-
portunities for further research and improvement. The
latter are interested in assessing how LLMs can act as
documentation assistants in practice, verifying whether
these models may be employed in real-world contexts
and potentially integrating them into their workflow.

3.1. Research Question
Our research question aimed to understand whether
LMMs can substantially support the software documen-
tation activities developed using a Waterfall Life model.
Understanding how documentation writing activities us-
ing LLM can improve artifacts and possibly reduce effort
would be crucial. We chose ChatGPT because of its popu-
larity and availability, in line with similar studies [23, 11].

In this context, we formulated the following research
question.

� RQ1. To what extent can ChatGPT support software
engineering documentation tasks in a Waterfall Life Cycle
model?

To address our research question, we conducted a pre-
liminary case study [24] using an oracle project and com-
paring it to the output of the LLM to provide insights into
understanding its usefulness for documentation tasks.
We followed the guidelines by Wohlin et al. [25] and the
ACM/SIGSOFT Empirical Standards for the report.2

3.2. Context of the Study
To address the goal of our work and provide preliminary
insights into the capabilities of ChatGPT for documenta-
tion tasks, we selected a project named Rojina Review, a
web-based platform for news and reviews of video games.
This project has 100k lines of code and was initially de-
veloped by a team of three software engineering students
at our university using a Waterfall lifecycle. On the one
hand, we selected a fully developed project, i.e., with the
full set of artifacts already developed to have a ground
truth against which to assess the capabilities of ChatGPT.

2Available at https://github.com/acmsigsoft/EmpiricalStandards. We
leveraged the guidelines available for “General Standard” and “Case
Study”.
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Table 1
Generated Artifacts

Document Description Artifact Considered

Requirements
Analysis
Document

Gathers and
analyzes the
system
requirements.

Scenarios
Functional Requirements
Non Functional Require-
ments
Use Cases
Class Diagram
Sequence Diagram
Statechart Diagram

System Design
Document

Outlines the
overall system
architecture.

Design Goals
Subsystems Division
Software/Hardware Map-
ping
Boundary Conditions

Object Design
Document

Defines the com-
ponent design.

Class Interfaces
Design Pattern

Test Plan & Test
Case Specification

Describes how to
test the system.

Test Case Specifications
Category Partition

On the other hand, this project was closely supervised by
the paper’s authors. We were familiar with the business
case and the artifacts that should have been developed,
but also confident of the quality of the project. We are
aware of potential threats to internal and external valid-
ity related to this choice. However, we believe the project
was good enough to ensure a satisfactory preliminary as-
sessment. Following Bruegge and Dutoit [26], we briefly
explain the documents created for this project in Table 1.

3.3. Formulating the Waterfall Story
Before starting our study, we gathered a working group
to determine a suitable prompt for ChatGPT. We adopted
a specific prompting process when interacting with Chat-
GPT for all artifacts to be created. This method allows the
conduction of the activities to produce documentation
artifacts, simulating the phases of the Waterfall lifecycle
Model. In detail, the process includes three steps:

#1-Initial interaction: We set up the environment
in ChatGPT. Specifically, we adopted a single chat to
interact and prevent the LLM from losing the project
context. Subsequently, we provided ChatGPT with an
initial prompt containing the preliminary information
of the project. We asked ChatGPT to provide informa-
tion concerning the problem statement.

#2-Artifact generation: to maintain the context of
the output generated in the previous phase, we asked
ChatGPT to provide the previous artifact at each de-
velopment phase.

#3-Inter-rater assessment: following the extraction
of answers provided by ChatGPT, an inter-rater assess-
ment process was initiated to evaluate the generated

output by the three first authors. The artifact produced
by ChatGPT was compared with the same artifact in
Rojina Review. The three first authors of the paper
had to agree to make an artifact acceptable. In case
of disagreement, a collaborative discussion was facil-
itated to address and resolve assessment disparities.
Afterward, the feedback was re-submitted to improve
the quality of the artifact. In this case, the discussion
about creating the artifact continued, and the feedback
from this phase was provided to ChatGPT until the
output was evaluated compliant for the evaluators or
the LLM could not respond better than the previous
phase.

When the third step of the process was completed,
the second step was repeated to create the next artifact.
Additionally, we noted that the language seemed more
accurate when we asked ChatGPT to impersonate a soft-
ware engineer. For this reason, we used a generic prompt
that guided our research:

Prompt of Requirement Tasks

You have to impersonate a software engi-
neer who has to produce the project docu-
mentation of a software project. Consider
the following problem statement to gener-
ate the output:
<problem statement content>
#Optional: Given that you have <addi-
tional info> (e.g., the non-functional re-
quirements in the RAD)
Generate <name of the artifact> for the
scope of the software project that we de-
fined
#Optional(only for UML artifacts) using
the PlantUML syntax.

We then started to generate the documentation in an
iterative and incremental process. The set of the doc-
umentation artifacts, according to the Waterfall Model,
the five main documents, and related tasks, are specified
in Table 1.

3.4. Data Extraction
From the documentation of the project selected, we ex-
tracted the document produced for each phase of the
Waterfall Model, a set of the most important artifacts as
listed in Table 1.

We produced a prompt for each artifact that ChatGPT
could use to generate the artifact. For the generation
of the diagrams, we have used PlantUML3. This open-
source tool allows users to create Unified Modeling Lan-

3Source code available at https://github.com/plantuml/plantuml
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guage (UML) diagrams using a plain text language. The
tool follows the findings of Cámara et al. [27], stating that
ChatGPT produces fewer syntactic mistakes and gets sig-
nificantly better results when using PlantUML compared
to other tools, such as USE4 tool.

Table 2
Effort Mapping

Effort Description

Low Effort The desired answer is obtained with a maxi-
mum of two prompts, does not need to be
too much articulated, and does not require
corrections, so it can easily used.

Medium Ef-
fort

The desired answer is produced with sev-
eral prompts ranging from three to five; the
response may require manual modification
where it is more complicated to have the bot
adjust the response.

High Effort The desired answer is obtained with a mini-
mum of six very detailed prompts, and the
response requires manual corrections that
the bot cannot implement.

3.5. Data Analysis
To analyze the result obtained using ChatGPT, the first
three authors of the paper, who have significant expe-
rience in software engineering both from an academic
and enterprise perspective, had defined a set of criteria
to evaluate the effort needed by a software engineer who
has to be supported in creating the artifacts of the docu-
mentation. Those criteria, listed in Table 2, consider the
number of prompts needed and the level of adjustment
of the prompt to reach an optimal result from ChatGPT.
The final acceptance of each artifact produced by Chat-
GPT was given by comparing it with the same artifact in
Rojina Review to assess the quality.

4. Preliminary Results
We submitted the prompts to ChatGPT for each selected
artifact to address our research question and obtained
the results detailed in Table 3. We started with the extrac-
tion of scenarios. During the interaction, we noted that
ChatGPT finds difficulties in identifying key elements
in the context. For instance, actors involved in a spe-
cific functionality are switched compared to the context
of the system given in input. Therefore, we added ad-
ditional prompts to address these issues. Subsequently,
we extracted functional requirements; ChatGPT produced
well-structured and formatted requirements after the first

4Source code available at https://github.com/useocl/use

Table 3
Results

Artifact Effort

Scenarios Medium Effort
Functional Requirements Low Effort
Non Functional Require-
ments

Low Effort

Use Cases Medium Effort
Class Diagram High Effort
Sequence Diagram High Effort
Statechart Diagram Medium Effort
Design Goals Medium Effort
Subsystems Division High Effort
Software/Hardware Map-
ping

Low Effort

Boundary Conditions Low Effort
Class Interfaces Low Effort
Design Pattern Low Effort
Test case specification Medium Effort
Category Partition High Effort

interaction. On the same line, the results for the non-
functional requirements; by defining the functional ones,
ChatGPT has been able to extract directly the related
non-functional requirements with a single prompt. Use
Cases need specific prompts for each system’s function-
ality defined previously. Moreover, additional prompts
were required to get the alternative flows. For the class
diagram, ChatGPT failed to produce a correct result with
the right hierarchies, relationships, and cardinality. We
observed the need to write the specific string “system
class diagram” to obtain results, allowing ChatGPT to
report associations among classes. For these reasons, the
LLM fail to give a correct result.

On the one hand, in the statechart, a restricted number
of prompts were needed to generate artifacts comparable
to Rojina Review. On the other hand, the Sequence
Diagrams needed more prompts with additional specifi-
cations to achieve a good result.

We needed a few prompts to generate the design
goals; assigning and ordering using priority needed more
prompts. The subsystems division needed many prompts
and corrections to get a result comparable with the arti-
fact of Rojina Review because initially, ChatGPT pro-
duced a semantically incorrect division, so we needed to
provide more details and required the PlantUML code.
There were no issues for software/hardware mapping,
boundary conditions, class interfaces, and design patterns:
ChatGPT has been able to generate a good result without
effort.

For the testing artifacts of the project, the category
partition required many prompts and was very specific

https://github.com/useocl/use


for each functionality to test. Otherwise, the test case
specifications was easier, as is using the category partition
as input to build each test.

5. Threats to Validity
Construct Validity. The main concern for construct
validity in our study concerns subject selection, partic-
ularly the version of the AI model. For evaluation, we
used the GPT-3.5 model, the most advanced and avail-
able version during the research. Even if the GPT-4
version has been released, the use is currently limited
by strict speed limits, and early feedback from the user
community suggests potential stability and accuracy
issues.

Internal Validity. To ensure robust internal validity,
we carefully considered factors that could influence
the outcomes derived from the LLM. Recognizing that
LLMs’ responses are susceptible to prompt formula-
tion, we conducted preliminary tests to identify the
most effective prompt structures [19, 22]. This step
was crucial to minimize variations in the model’s re-
sponses that could arise from prompt-related biases,
thereby ensuring that our findings more accurately re-
flect the capabilities of the LLM rather than the nuances
of our prompt phrasing. Additionally, each interaction
with the LLM was assessed iteratively by more authors
through inter-rater assessment, allowing the reduction
of the subjectivity of the results. We evaluated the ac-
curacy of documents generated by ChatGPT using a
high-quality project from an undergraduate software
engineering course as an oracle. This comparison was
critical to verify that the observed results were indeed
attributable to ChatGPT’s capabilities.

External Validity. The external validity threat exam-
ines whether the results of a study can be generalized
to other contexts. We experienced only one case study
of moderate complexity, which may limit the generaliz-
ability of the study. Scenarios with greater development
complexity, different types of development (e.g., agile
instead of waterfall), and human writing prompt skills
may affect the external validity of this research. Future
work may involve validating the process with project
managers and a more significant number of software
projects to minimize this external threat to validity.

6. Conclusion and Future Work
In our study, to what extent ChatGPT can support soft-
ware engineers in documenting waterfall projects. We
compared its use with a high-level university project,
focusing on response variability, design impact, and the
balance between AI support and human oversight. Our

preliminary findings suggest ChatGPT reduces time and
effort. Future work will involve a longitudinal study with
professional feedback, exploring how prompt generation
expertise enhances real-world outputs.
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