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Abstract
With the rapid evolution of advanced industrial systems exploiting deep learning techniques, the availability of multimodal
and heterogeneous datasets of operators working in industrial scenarios is essential. Such datasets allow in-depth studies for
accurate segmentation and recognition of the actions of operators working alongside collaborative robots. Using multimodal
information guarantees the capture of relevant features to analyze human movements properly. This paper presents our recent
research activity on the development of two datasets representing human operators performing assembly tasks in industrial
contexts. The dataset for Human Action Multi-Modal Monitoring in Manufacturing (HA4M) is a collection of multimodal data
recorded using a Microsoft Azure Kinect camera observing 41 subjects while performing 12 actions to assemble an Epicyclic
Gear Train (EGT). The dataset for Human-Cobot Collaboration for Action Recognition in Manufacturing Assembly (HARMA)
focuses on the interaction between 27 subjects and a collaborative robot while assembling the EGT in 7 actions. In this case,
the acquisition setup consisted of two Microsoft Azure Kinect cameras. Both datasets were collected in controlled laboratories.
To prove the validity of the HA4M and HARMA datasets, state-of-the-art temporal action segmentation models, i.e. MS-TCN++
and ASFormer, were trained using both skeletal and video features. The results successfully prove the effectiveness of the
presented datasets in segmenting human actions in industrial contexts.
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1. Introduction
In Industry 5.0, the interaction between humans and col-
laborative robots (cobots) is becoming more and more
important for manufacturing processes [1]. Cobots repre-
sent a shift in robotic technology. Traditional robots typ-
ically operate in confined work cells or dedicated spaces
having predefined and automated tasks. Unlike tradi-
tional robots, cobots operate in environments where they
can interact directly with human workers to solve tasks
that require a combination of human cognition and robot
strength and repeatability.

In manufacturing processes, human action recognition
and segmentation are crucial for many reasons: to pro-
mote human-robot cooperation [2]; to assist operators
[3]; to support employee training [4, 5]; to increase pro-
ductivity and safety [6]; or to promote workers’ good
mental health [7]. In particular, the accurate recognition
and segmentation of the actions, including the timing of
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when the actions commence and conclude, is essential
for the cobot to understand and interpret the intended
actions of the human collaborator, to synchronize its
actions, respond in real-time, and ensure smooth cooper-
ation with the human collaborator [8] [9].

Recently, the research has notably focused on using
multimodal data, which can contribute to developing
more sophisticated and adaptive action recognition sys-
tems. In particular, the information derived from skeletal
joints enables researchers to capture temporal variations
in body movements. It offers flexibility in focusing on
the entire body or specific body parts, allowing for a com-
prehensive representation of the action recognition and
bypassing eventual privacy concerns [10] [11].

To the best of the authors’ knowledge, few vision-
based datasets exist on human-cobot cooperation for
object assembly in industrial manufacturing. For this
reason, in the last few years, our research has been fo-
cused on the task of generating real datasets for prac-
tical applications of action recognition in the manufac-
turing context. The datasets for Human Action Multi-
Modal Monitoring in Manufacturing (HA4M) and the
Human-cobot collaboration for Action Recognition in
Manufacturing Assembly (HARMA), consist of multi-
modal information acquired during the assembly of an
Epicyclic Gear Train (EGT), depicted in Figure 1, with-
out and with the collaboration of a cobot, respectively.
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Figure 1: Components involved in the assembly of the Epicyclic Gear Train. The CAD model of the components is publicly
available at [12].

The HA4M dataset was recorded using one single depth
camera, while the HARMA dataset was recorded using
two depth cameras. The Microsoft® Azure Kinects have
been selected as depth cameras in both cases.

The two proposed datasets present various main con-
tributions compared to the existing ones [13, 14] in the
context of object assembly in industrial manufacturing:

• The datasets provide untrimmed sequences of sev-
eral types of data: RGB frames, Depth maps, RGB-
to-depth-Aligned (RGB-A) frames, and Skeleton
data. The availability of a variety of multi-modal
data represents an added value for the scientific
community to test different machine learning ap-
proaches in action segmentation as well as ac-
tion recognition tasks, by using one or more data
modalities.

• The datasets present a variety in action execution
due to the different order followed by the subjects
to perform the actions and the interchangeable
use of both hands.

• The actions have a high granularity as the compo-
nents to be assembled and the actions themselves
appear visually similar. As a result, recognizing
different actions is very challenging and requires
a high level of context understanding and object-
tracking skills.

• Both datasets provide a good base for developing,
validating, and testing techniques and method-
ologies for the recognition and segmentation of
assembly actions.

Preliminary experiments have been conducted to test
state-of-the-art temporal action segmentation methods,
the ASFormer [15] and MS-TCN++ [16], on RGB and
skeletal data achieving considerable accuracy rates in
action segmentation.

The remainder of this paper is organized as follows:
Section 2 presents the datasets and describes the assembly
task, reporting details on the acquisition setup, study
participants, and data annotation. Section 3 reports some

experimental results on action segmentation. Finally,
Section 4 delineates conclusive remarks.

2. Datasets description
The task involves the assembly of an Epicyclic Gear Train
(EGT) (see Figure 1), which involves three phases: the
assembly of Block 1, the assembly of Block 2, and then
the completion of the EGT that makes up both blocks.
The HA4M dataset contains videos of different operators
that assemble the complete EGT. The HARMA dataset,
instead, contains videos of different operators that assem-
ble the EGT in collaboration with a cobot. All the subjects
participated voluntarily in the experiments. They were
asked to execute the task several times as preferred (e.g.
with both hands), independently of their dominant hand.
Furthermore, the subjects performed the task at their
comfortable self-selected speed so that high time vari-
ance could be noticed among the different subjects. The
subsequent sections give more details on both datasets.

2.1. HA4M dataset
The HA4M dataset contains 217 videos of the assembly
task performed by 41 subjects. The acquisition setup is
composed of a Microsoft Azure Kinect® camera placed
on a tripod in front of the operator as pictured in Fig. 2.

The camera is at a height of 1.54𝑚 above the floor,
at a horizontal distance of 1.78𝑚 from the far border of
the table, and is tilted down to an angle of 17°. As shown
in Figure 2, the individual components to be assembled
are spread on the table in front of the operator and are
placed according to the order of assembly. The opera-
tor can pick up one component at a time to perform the
assembly task standing in front of the table. The exper-
iments took place in two laboratories: one in Italy and
one in Spain. Two typical RGB frames captured by the
camera in both laboratories are shown in Figure 3. The
Figure also depicts the two supports fixed on the table to
facilitate the assembly of Block 1 and Block 2.



Figure 2: Sketch of the acquisition setup of the HA4M dataset:
a Microsoft® Azure Kinect is placed in front of the operator
and the table where the components are spread over.

(a) (b)

Figure 3: Typical video frames acquired by the RGB-D camera
in the (a) Italian and (b) Spanish Laboratories.

Table 1
List of Block 1, Block 2, and EGT components, respectively.

EGT Components

Quantity Description

Block 1

3 Planet Gear
3 Planet Gear Bearing
1 Carrier Shaft
1 Carrier

Block 2

1 Ring Bear
1 Sun Gear Bearing
1 Sun Gear
1 Sun Shaft

EGT

1 Block 1
1 Block 2
1 Cover

Tables 1 and 2 list the components and the actions
necessary for assembling Block 1, Block 2, and the whole
EGT, respectively. Notice that the final action (ID=12)
involves additional tools, such as two screws and an Allen
key to secure the EGT.

As listed in Table 2, the total number of actions is 12,
divided as follows: four actions for building Block 1, four
for building Block 2, and four for assembling the two

blocks and completing the EGT. Some actions are per-
formed more times as there are more components of the
same type to be assembled: actions 2 and 3 are executed
three times, while action 11 is repeated two times. Finally,
a “don’t care” action (ID=0) has been added to manage
pauses between action transitions or unexpected events
such as the loss of a component during the assembly.

Table 2
List of actions to build Block 1, Block 2, and EGT in the HA4M
dataset.

Actions

ID Description

0 “don’t care” action

Block 1

1 Pick up/Place Carrier over Support 1
2 Pick up/Place Gear Bearings (×3)
3 Pick up/Place Planet Gears (×3)
4 Pick up/Place Carrier Shaft

Block 2

5 Pick up/Place Sun Shaft over Support 2
6 Pick up/Place Sun Gear
7 Pick up/Place Sun Gear Bearing
8 Pick up/Place Ring Bear

EGT

9 Pick up Block 2 and place it on Block 1
10 Pick up/Place Cover
11 Pick up/Place Screw (×2)

12
Pick up Allen Key, Turn both screws, Re-
turn Allen Key and the EGT

2.2. HARMA dataset
The HARMA dataset comprises 160 videos (80 videos per
camera) capturing the assembly task performed by 27
subjects in collaboration with a cobot (Fanuc CRX10ia/L
robotic arm). Each subject performed the task multiple
times, resulting in 240 task executions in the dataset.

The acquisition setup is pictured in Fig. 4. The two
Microsoft® Azure Kinect cameras are placed on a tri-
pod in Frontal and Lateral positions to the Operator
Workplace. The Frontal Camera is at a height of 1.72𝑚
above the floor and down tilted by an angle of 6 𝑑𝑒𝑔𝑟𝑒𝑒𝑠,
while the Lateral Camera is at a height of 2.07𝑚 and
19 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 down tilted. Two typical RGB frames cap-
tured by both cameras are shown in Fig. 5. As shown in
Fig. 5, the EGT components are spread over the Operator
Workplace, so the operator can pick up one component
at a time to perform the assembly task in seven pick-
and-place actions [14]. The operator assembles Block
1, whereas the cobot assembles Block 2. The assembly
of Block 2 done by the cobot is not considered in the
HARMA dataset, as our goal is to recognize the actions
performed by the operator to trigger the cobot when it



Figure 4: Sketch of the acquisition setup of the HARMA
dataset: two Microsoft® Azure Kinect cameras are placed in a
Frontal and Lateral position to the operator’s workplace.

(a) (b)

Figure 5: Sample frames captured by the (a) Frontal and (b)
Lateral camera, respectively, during the assembly task.

has to approach the operator to perform the collabora-
tion action. So, the HARMA dataset comprises videos of
only the assembly task performed by the subjects, includ-
ing the collaborative action needed to join Block 1 and
Block 2 (action 5 in Tab. 3). Table 3 lists the seven actions
included in the HARMA dataset. As can be noticed in
Table 3, unlike the HA4M dataset, the Cover is secured
with two hooks (see Figure 6).

Figure 6: Completion of the EGT by placing the Cover and
the two Hooks as included in Action 7 of Table 3.

3. Experiments
This section presents preliminary experiments and re-
sults on temporal action segmentation by applying state-

Table 3
List of the actions carried out by the operator for the construc-
tion of the EGT in the HARMA dataset.

Actions

ID Description

0 “don’t care” action

Block 1

1 Pick up/Place Carrier over the Support
2 Pick up/Place Planet Gear Bearing (×3)
3 Pick up/Place Planet Gear (×3)
4 Pick up/Place Carrier Shaft

EGT

5 Pick up Block 1 and join it with Block
2 held by the cobot

6 Pick up/Place the Cover
7 Pick up/Place the 2 Hooks, then leave

the EGT on the table

of-the-art deep learning methods to HA4M and HARMA
datasets. Both datasets were split into non-overlapping
training and testing sets by considering the 70% of videos
for training and the remaining 30% for testing, ensuring
that videos of the same operator do not appear in both
training and testing sets.

ASFormer [15] and MS-TCN++ [16] models have been
applied to test action segmentation performance. The AS-
Former (risp. the MSTCN++) models were fed using RGB
and Skeletal data extracted from both datasets, perform-
ing the training over 120 (risp. 100) epochs, collecting
losses for each iteration. The best model is chosen as
the one with the lower loss within the total number of
iterations and is used in the test phase.

Tab. 4 lists the performance rates in terms of Accuracy,
Edit Score, and F1-score. Accuracy is a frame-wise met-
ric that measures the proportion of correctly classified
frames in the entire video sequence without capturing the
temporal dependencies between action segments. The
Edit Score, instead, measures how well the model predicts
the ordering of action segmentation without requiring
exact frame-level alignment. Finally, F1-score with a
threshold 𝜏 , often denoted as F1@𝜏 , accounts for the de-
gree of overlap between the Intersection over Union (IoU)
of each predicted segment and ground truth segments
[17]. In the experiments, the threshold 𝜏 has been set to
60%, 70% and 80%. Focusing on these metrics, it can be
noticed that all the considered models succeeded in cor-
rectly segmenting the actions for the assembly task. In
particular, the Accuracy rates reached high values (over
91%) in both cases of using RGB or skeletal features.

For completeness, Figure 7 shows a qualitative repre-
sentation of action segmentation obtained by applying
MS-TCN++on and ASFormer models to one video from
the HA4M and one from the HARMA dataset. These



Table 4
Performance rates on action segmentation obtained by applying ASFormer and MS-TCN++ architectures, using RGB and
Skeletal data grabbed from HA4M and HARMA datasets.

TAS Model Dataset Features Acc. Edit F1 @ {60, 70, 80}

ASFormer [15]
HA4M

RGB 91.79% 95.10% 87.81% 80.82% 70.27%
Skeleton 92.43% 93.01% 86.71% 79.28% 69.42%

HARMA
RGB 94.2% 93.6% 92.0% 88.7% 83.4%

Skeleton 94.51% 95.08% 91.03% 87.97% 78.24%

MS-TCN++ [16]
HA4M

RGB 93.53% 93.85% 91.12% 86.01% 76.22%
Skeleton 94.92% 95.9% 92.57% 88.57% 81.85%

HARMA
RGB 92.13% 86.23% 78.18% 74.54% 66.00%

Skeleton 94.45% 93.89% 90.24% 87.80% 81.80%

Figure 7: Action segmentation results over a video from the HA4M (a) and a video from the HARMA (b) dataset. GT, RGB,
and Skel stand for Ground Truth, use of RGB features and use of Skeletal features, respectively. The labels in orange indicate
the results obtained by the MS-TCN++ model, while the labels in blue remark the outcomes of the ASFormer architecture.

videos have been chosen to display challenging situa-
tions such as the case of Action2 (dark blue bars) and
Action3 (light blue bars) that in the case of HA4M (Fig.
7(a)) are not always detected properly depending on the
used features or applied model. On the contrary, Fig. 7(b)
shows better segmentation results also for actions 2 and
3. Furthermore, in the HARMA dataset, the availability
of two cameras allows us to compensate for the lack of
data when one camera fails to provide skeletal data due
to occlusion or out of range [18].

4. Conclusions
The present paper depicted an examination of two indus-
trial datasets, namely the Human Action Multi-Modal
Monitoring in Manufacturing (HA4M), and the Human-
cobot collaboration for Action Recognition in Manufac-
turing (HARMA). Both datasets address the high demand
for human action recognition and segmentation within
industrial manufacturing contexts, particularly regard-

ing scenarios involving Human-Robot collaboration and
interaction. The multimodal features within the datasets
encompass a variety of actions and interactions in in-
dustrial assembly tasks, allowing this work to lay the
foundation for the development and enhancement of
intelligent systems aiming at the understanding and as-
sisting human operators in manufacturing production
lines.

To properly evaluate HA4M and HARMA, state-of-the-
art temporal action segmentation models were consid-
ered, namely ASFormer and MS-TCN++, which demon-
strated notable success in exploiting the data provided
by the datasets. The comparison between the RGB and
Skeletal features underlines the potential of a multimodal
approach to balance the computational efficiency with
the precision required for the recognition and segmenta-
tion of complex tasks.

The conducted experiments prove that, overall, both
RGB and Skeletal features performed properly. RGB data
provides rich visual information about the scene but typ-
ically requires higher storage space and computational



complexity compared to skeleton-based data representa-
tion. On the other hand, by using skeleton data is possible
to abstract away detailed appearance information and
focus solely on the spatial configuration of body joints
and movements. Therefore, it’s essential to carefully
find a good trade-off and select the data modality that
best aligns with the goals and constraints of the working
context.

The presented datasets are benchmarks for further
studies in novel models and algorithms that can improve
the accuracy and reliability of action recognition and
segmentation systems in industrial settings. HA4M and
HARMA offer a valuable resource for the research com-
munity, allowing ongoing innovation and development
of human-robot collaboration systems in complex, real-
world scenarios.
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