
Dictionary Learning for data compression within a Digital
Twin Framework
Laura Cavalli1,*, Domitilla Brandoni1, Margherita Porcelli2,3 and Eric Pascolo1

1CINECA, Via Magnanelli 2, Casalecchio di Reno (BO), 40033, Italy
2Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Viale Morgagni 40/44, 50134, Firenze, Italy
3ISTI–CNR, Via Moruzzi 1, Pisa, Italy. INdAM Research Group GNCS.

Abstract
Digital Twin system plays a crucial role in several contexts, from smart agriculture to predictive maintenance, from healthcare
to weather modelling. To be effective, it involves a continuous exchange of massive data between IoT sensors on real world and
digital system hosted on HPC and vice versa. Nevertheless, the transmitted signals often exhibit high similarity, resulting in a
redundant dataset very suitable for compression. This paper shows how Dictionary Learning can be used as a preprocessing
technique for AI algorithms due to its ability to compress large data volumes up to 80% with a potential enhancement of the
performances acting both as a denoising and compression technique. This algorithm operates efficiently on various types of
datasets, from images to timeseries, and is well-suited for deployment on devices with limited computational resources, like
IoT sensors.

Keywords
Digital Twin, Dictionary Learning, parallel OMP, timeseries compression, images compression, anomaly detection, image
recognition

1. Introduction
A digital twin can be simply seen as a system consist-
ing of two entities, a tangible, subject-of-interest, and its
digital replica, interconnected by a continuous stream of
data. In this context, data reflecting the physical entity
are acquired through IoT sensors and sent to a dedicated
HPC which constitutes its digital mirror. Within the HPC,
data undergoes AI analysis to simulate the behavior and
potential scenarios of the physical entity. The resulting
insights are looped back into the physical system, im-
pacting decision-making. An efficient transmission and
storage of such large volumes of sensor data are therefore
crucial to reduce latency between the two systems ensur-
ing a reliable real-time digital representation, but this is
often prohibitively expensive. For this reason, it is neces-
sary to explore compression algorithms that lighten and
speed up data transmission while preserving their mean-
ingful information. Among the available state-of-the-art
compression tools, we explore Dictionary Learning (DL),
a robust sparse matrix factorization approach. Given a
matrix of signals 𝑌 , DL is able to learn a sparse repre-
sentation 𝑌 ≈ 𝐷𝑋 expressing each signal as a linear
combination of few basis elements, called atoms, which

Ital-IA 2024: 4th National Conference on Artificial Intelligence, orga-
nized by CINI, May 29-30, 2024, Naples, Italy
*Corresponding author.
$ l.cavalli@cineca.it (L. Cavalli); d.brandoni@cineca.it
(D. Brandoni); margherita.porcelli@unifi.it (M. Porcelli);
e.pascolo@cineca.it (E. Pascolo)
� 0000-0002-8157-1459 (D. Brandoni); 0000-0003-0183-1204
(M. Porcelli)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

constitute the columns of 𝐷. In this work we will show
that DL has various features that make it very suitable
for use in data compression and transmission: i) it en-
ables exceptional compression of redundant data due to
its distinctive sparse factorization feature; ii) it is a ver-
satile approach being able to handle diverse data types,
including images and time series; iii) its solution can be
performed with an algorithm, supplied in this work, with
low computational resource demand and independent of
specific libraries, making it lightweight and well-suited
for edge computing.

The literature on DL comprises many applications
across various fields, including denoising, inpainting,
classification, and compression. Regarding data com-
pression, an interesting online DL approach is proposed
in [1] where massive datasets streamed through in a pre-
set order are compressed and denoised. Furthermore, the
work [2] presents CORAD, a novel DL-based compression
algorithm for time series which is able to harness the cor-
relation across multiple related time series to eliminate
redundancy performing a more efficient compression.
However, as far as we know, this work is the first to in-
corporate DL as a compression method within the Digital
Twins (DT) domain, using it as a powerful preprocess-
ing technique for both time series and images. Also, we
developed an optimized DL algorithm for increasing its
lightweight and efficiency in the DT framework.

This work is structured as follows: Section II gives
a brief overview of the DL problem and of its solution.
Section III integrates the DL approach within a DT frame-
work and presents the overall DL4DT workflow, while
Section IV discusses numerical results, conducting a de-

mailto:l.cavalli@cineca.it
mailto:d.brandoni@cineca.it
mailto:margherita.porcelli@unifi.it
mailto:e.pascolo@cineca.it
https://orcid.org/0000-0002-8157-1459
https://orcid.org/0000-0003-0183-1204
https://creativecommons.org/licenses/by/4.0


tailed analysis of the algorithm performance across var-
ious datasets. Additionally, it introduces several tech-
niques designed to improve the algorithm execution
speed. All the codes necessary to reproduce the experi-
ments shown in this paper are available at the following
link: https://github.com/Eurocc-Italy/DL4DT.

2. Dictionary Learning overview
The aim of DL is to discover an overcomplete set of basis
functions (atoms) able to represent in a sparse manner a
given set of data samples. Given a matrix of training sig-
nals 𝑌 ∈ R𝑚×𝑁 (𝑚 ≪ 𝑁), DL seeks to find a dictionary
𝐷 ∈ R𝑚×𝑛(𝑚 ≪ 𝑛) and a sparse matrix 𝑋 ∈ R𝑛×𝑁

to represent 𝑌 ≈ 𝐷𝑋 . The DL problem can be formu-
lated in many equivalent ways, each one promoting a
different aspect of the problem as shown in detail in [3].
In this case we decided to formulate it as a two variable,
non-convex, constrained optimization problem of the
form

min
𝐷,𝑋

‖𝑌 −𝐷𝑋‖2𝐹 s.t. ‖x𝑙‖0 ≤ 𝑠, 𝑙 = 1, . . . , 𝑁

‖d𝑗‖2 = 1, 𝑗 = 1, . . . , 𝑛
(1)

where the number of atoms 𝑛 and the sparsity level 𝑠 are
fixed. Here, ‖ · ‖2 and ‖ · ‖0 denote the ℓ2 and ℓ0 norm of
a vector, respectively, and ‖ · ‖𝐹 is the Frobenius norm.

Problem (1) is NP-hard and admits multiple global op-
tima; therefore the convergence to the global minimum
is not guaranteed. In order to solve the DL problem, we
follow the usual alternate optimization approach. More
precisely, given the signal matrix 𝑌 and an initial dictio-
nary 𝐷, at each iteration first the minimization problem
in 𝑋 is solved while 𝐷 is fixed (Sparse Coding step)
and then the minimization problem in 𝐷 is solved while
keeping 𝑋 (possibly) fixed (Dictionary Update step).

The problem to be solved at the sparse coding step can
be formulated as follows

min
𝑋

‖𝑌−𝐷𝑋‖2𝐹 s.t. ‖x𝑙‖0 ≤ 𝑠, 𝑙 = 1, . . . , 𝑁. (2)

that can be decomposed in the solution of 𝑁 problems,
i.e. one for each signal

min
x𝑙

‖y𝑙−𝐷x𝑙‖22 s.t. ‖x𝑙‖0 ≤ 𝑠, 𝑙 = 1, . . . , 𝑁. (3)

For solving each problem (3), we employed Orthogonal
Matching Pursuit (OMP), an iterative greedy algorithm
that selects at each step the atom which is best correlated
with the residual e := y − 𝐷x. Then it produces a
new approximation by projecting the signal y onto the
dictionary elements that have already been selected (𝐷𝒮 ).
We report in Algorithm 1 a naive version of OMP where
the least squares solution 𝑥𝒮 is computed from scratch
at each step (refer to [4] for more details).

Algorithm 1 OMP (naive approach) [4]
Given y ∈ R𝑚, the sparsity level 𝑠, the dictionary
𝐷 ∈ R𝑚×𝑛 and the stopping tolerance 𝜖 > 0
Initialize 𝒮 = ∅, e = y
while |𝒮| < 𝑠 and ‖e‖2 > 𝜖 do

𝑘 = argmax𝑗 /∈𝒮 |e
𝑇d𝑗 |

𝒮 = 𝒮 ∪ {𝑘}
x𝒮 = (𝐷𝑇

𝒮𝐷𝒮)
−1𝐷𝑇

𝒮 y
e = y−𝐷𝒮x𝒮

end while

Since at each step the current matrix 𝐷𝒮 is updated by
simply appending one column, a more efficient imple-
mentation can be obtained by exploiting the least squares
solution just computed at the previous step. The most
famous approaches make use of the Cholesky decompo-
sition of 𝐷𝑇

𝒮𝐷𝒮 [4, sec. 2.2] or the QR decomposition of
𝐷𝒮 [4, sec. 2.3]. Our computational experience showed
that the OMP-QR implementation is faster when applied
to DL [5]. Therefore, we implemented our parallel ver-
sion of the OMP-QR code to speed-up the computational
times.

Regarding the Dictionary Update step, the following
minimization problem has to be solved

min
𝐷,(𝑋)

‖𝑌 −𝐷𝑋‖2𝐹 s.t. ‖d𝑗‖2 = 1, 𝑗 = 1, . . . , 𝑛

(4)
where the sparsity pattern of 𝑋 is fixed. For this task we
followed the K-SVD approach [6].

3. Dictionary Learning to reduce
latency in Digital Twin

Reducing data latency is one of the main challenges
within the DT context. This section aims to outline
the proposed workflow, named DL4DT, to decrease data
transmission time using DL as a compression technique.
DL4DT, illustrated in Figure 1, takes place in two stages.
First of all (Fig.1 top), the data are collected from the phys-
ical device, represented as a matrix 𝑌 and then transmit-
ted to the digital counterpart. Here, the entire process of
DL factorization is applied to 𝑌 , resulting in the learning
of a reliable and robust overcomplete dictionary 𝐷 and
the sparse representation 𝑋 . The dictionary 𝐷 is both
saved on the digital system and transmitted back to be
saved also on the physical one. Afterwards, a new smaller
dataset of signals 𝑌1 is collected (Fig.1 bottom). Instead of
transferring the complete 𝑌1, we claim that computing its
sparse representation 𝑋1 with OMP using the reference
dictionary 𝐷 from stage 1 is sufficient. Transmitting 𝑋1,
which is highly sparse, indeed improves transmission
time and reduces costs: solving a single Sparse Coding
step demands fewer computational resources compared

https://github.com/Eurocc-Italy/DL4DT


Figure 1: First (top) and next (bottom) runs of DL4DT.

to full DL, and transferring only 𝑋1 is lighter than send-
ing the entire 𝑌1. Indeed, suppose that 𝑌1 has 𝑁 signals
of 𝑚 features each. Instead of passing all the 𝑚×𝑁 ele-
ments, with our method is enough to transmit the 𝑠×𝑁
non-zero elements of 𝑋1. Notice that in sparse matrices,
each non-zero element is stored as a triplet (row_index,
column_index, non_zero_value) requiring a total storage
of 𝑠×𝑁 × 3 values. Therefore, the benefit of transfer-
ring 𝑋1 results in a reduction of 1− 3𝑠

𝑚
. Moreover, users

have the flexibility to specify under which conditions the
dictionary 𝐷 has to be updated, in order to have more
reliable results. For example, a reasonable choice can be
updating the dictionary after a fixed period of time or
when the accuracy of the AI algorithm on the compressed
dataset starts to decrease too much. We refer to these
conditions as user_conditions in the forthcoming Algo-
rithm 2. As we will prove, DL4DT is very effective since
DL techniques allow to massive compression preserving
main important features of the dataset. DL4DT has been
resumed in Algorithm 2.

4. Numerical Results
In this section, after introducing the datasets, we vali-
date the DL approach as an effective compression tool
for addressing DT latency problems. Then, we simulate
and analyze the DL4DT workflow presented in Section
3, exploiting the DL ability to build a highly representa-
tive dictionary. All experiments were run on Galileo100
[7], an HPC infrastructure owned by CINECA with 528

Algorithm 2 DL4DT: workflow of a DT process with DL
techniques.

Collect data on the physical counterpart in matrix 𝑌 .
Send 𝑌 to the digital system.
Compute the dictionary 𝐷 and the sparse matrix 𝑋
with DL factorization of 𝑌 on the digital system.
𝑖 = 0
while True do

if 𝑖 = 0 then
Send the dictionary 𝐷 to the physical system
and store it.

else
Compute 𝑋 using OMP-QR on the physical
system.
Send 𝑋 to the digital system.

end if
𝑖 = 𝑖+ 1
Compute 𝑌 = 𝐷𝑋 on the digital system.
Apply AI algorithm using 𝑌 as dataset.
if user_conditions then

break
end if

end while

computing nodes each 2 × CPU Intel CascadeLake 8260,
with 24 cores each, 2.4 GHz, 384GB RAM and NVIDIA
Mellanox Infiniband 100GbE network.

4.1. Datasets
We focused on three datasets with various types of data
(images or timeseries) and dimensions: MNIST [8], FordA
[9], and a fine-grained timeseries on the D.A.V.I.D.E. HPC
system [10, 11]. D.A.V.I.D.E. is a supercomputer devel-
oped by E4 Computer Engineering [12] and hosted in the
past by CINECA, with an integrated monitoring infras-
tructure called Examon [10]. In this work we focused on
a subset of the data collected by Examon: for each of the
45 nodes, were considered 166 metrics such as core work-
loads, temperatures, fan speeds, power consumption, etc
collected in 5-minute intervals. In detail, we focused on
the 16th node.

4.2. Dictionary Learning compression
To evaluate the effectiveness of our compression, it is es-
sential to compare the information generated by AI mod-
els trained on both the original and compressed datasets.
This is crucial within the DT framework, where our pri-
mary aim is to extract valuable insights from compressed
data.

We considered a CNN tailored for digit recognition
[13] on MNIST dataset, a CNN able to perform anomaly
detection suggested in [14] on FordA and an autoencoder-



based model able to automatically detect anomalies in a
semi-supervised fashion ([10, 11]) on D.A.V.I.D.E. After
training the NNs described above on both original and
compressed datasets, we compared their performance
on the same test set by studying the accuracy, which
is defined as the ratio of the number of correct predic-
tions over the total number of predictions. Figure 2 com-
pares respectively the test accuracy achieved by the NNs
trained on the original dataset (green dotted line) and
on a DL compression of MNIST (top) and FordA (bot-
tom) concerning a sparsity level of 𝑠 = 50 and a number
of iterations 𝐾 = 20 (orange solid line) across various
compression levels. The results obtained with other set-
tings of DL are shown in more detail in [5]. As expected,

40 50 60 70 80
70

80

90

100

% compression

ac
cu

ra
cy

40 50 60 70
70

80

90

100

% compression

ac
cu

ra
cy

no compression s = 50

Figure 2: Accuracy of different compression levels with 𝑠 =
50 compared to the accuracy with no compression on MNIST
(top) and FordA dataset (bottom).

the accuracy computed on the compressed datasets is
lower than the one computed on the original dataset. De-
spite not matching exactly the original accuracy, we still
achieve extremely good results: with MNIST dataset we
can even reach an accuracy of 97% with a compression of
80% against an accuracy of 99% with no compression, this
is probably due to the redundant nature of the datasets,
which makes it possible to achieve high accuracy lev-
els even with high levels of compression. On FordA an
overall accuracy of 91% is reached even with high com-
pression levels against 96% with no compression. Figure 3
shows at the top the test accuracy achieved by the autoen-
coder trained on the original D.A.V.I.D.E dataset (green
dotted line) and on the dataset compressed with DL with
𝑠 = 5 and 𝐾 = 10 (orange solid line) and different com-

pression settings. The overall accuracy, approximately
86%, is lower than previous cases as expected due to the
real-world nature of the dataset. However we notice that
the test accuracy reached by training the autoencoder on
the compressed training dataset is almost identical to the
one obtained with no compression. However, when deal-
ing with imbalanced datasets, it is better to consider the
F-score value achieved for each class (normal signals and
anomalies) rather than the accuracy. F-score value is de-
fined as F-score:= 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

and 𝑟𝑒𝑐𝑎𝑙𝑙 are the ratio of true positives to the total pre-
dicted positives and to the actual positives, respectively.
We notice that the F-score reached on normal signals,

60 70 80
85

90

95

100

% compression
ac

cu
ra

cy

60 70 80
85

90

95

100

% compression

F-
sc

or
e

60 70 80

85

90

95

100

% compression

F-
sc

or
e

no compression s = 5

Figure 3: Accuracy (top), F-score on normal signals (middle)
and on anomalies (bottom) with DL with 𝑠 = 5 compared to
the case with no compression on D.A.V.I.D.E. timeseries.

shown in the middle of Fig.3, remains almost unaffected
by compression: across various DL configurations, the
F-score consistently remains close to 98%, as the original
case without compression. This finding aligns with our
expectations, as the training set in this example consists
only of signals without anomalies. As for the F-score of
anomalies, shown at the bottom of Fig.3, we observe that
this value increases when compression is more intense.
Examining the details of the Recall and Precision values
for these cases (Table 1), we notice that, respectively, the
Recall for normal signals and the Precision for anomalies
are higher compared to the case without compression.



Table 1
Precision and Recall values for normal signals and anomalies
with no compression and 80% DL compression with 𝑠 = 5.

compression type of signal Precision Recall

0 % normal 99.8 95.4
80 % normal 99.8 96.3
0 % anomaly 79.8 99.1
80 % anomaly 84.2 99.1

These two values (Recall of normal signals and Precision
of anomalies) take into account the cases where certain
signals are identified as anomalies even though they are
not. The higher the value, the more this type of error is
avoided. Therefore, it is consistent that DL compression
can increase these values, as DL is known as a valuable
denoising tool, leading to improved anomaly detection.

Let us explore some implementations of the code. In
our scenario, we have to deal with substantial problem
dimensions but we can also benefit of the computational
resources of an HPC cluster in the first stage of the work-
flow presented in Section 3. These resources can be
fully employed in the OMP algorithm which can be par-
allelized with the Joblib python library [15] following
what was mentioned in Section 2. Figure 4 illustrates the
speedup achieved by executing OMP-QR both serially
and in parallel with an increasing number of processors,
where speedup is the ratio of the execution time of the
serial code to the execution time of the parallel code
performing the same task.

2 4 8 16

2
4

8

16

# tasks

Sp
ee

d
U

p

ideal joblib

Figure 4: Speed up of OMP-QR algorithm in serial and with
Joblib parallelization. For this type of problem it is not mean-
ingful to increase resources beyond 16 tasks.

The proposed parallelization has a significant impact
on the total computational time of the DL algorithm:
when the plane DL algorithm is run sequentially with
a single CPU, it requires about 20 hours to complete 20
iterations on a matrix of size 784 × 60.000, while the
same algorithm implemented with the Joblib parallelized
version of OMP-QR using 16 CPUs completes the task in
about 5 hours. We have also developed a light C version

of the OMP-QR code better suited for running on devices
with limited computational resources.

4.3. Dictionary representativity
As already mentioned, the data provided by a DT do not
usually show great variability. This section aims to verify
whether the dictionary learned in the first stage is robust
enough to accurately represent newly collected data. If
successful, it would make it possible to run the sparse
coding step (OMP-QR) without the need for a dictionary
update. In particular we integrate the study of dictionary
representativity into a simulation of the DL4DT workflow
on D.A.V.I.D.E. dataset, keeping track of the original sizes,
compression levels, and times.

The goal of the first stage is to learn a reliable and
representative dictionary. Thus, we begin by consider-
ing the 4432 signals of its training set. In our workflow
these data are sent to the digital twin where we choose
to apply the strongest yet most meaningful compression,
i.e. compression of 80 % with 𝑠 = 20, 𝑛 = 349 and 10
iterations. From previous studies we know that such a
compression can reach an overall F-score level of about
97.9% on normal signals and 90.7% on anomalies, taking
around 3 minutes. Then the dictionary is stored both in
the digital twin and sent back to the physical one.
After a fixed time interval a new matrix of signals 𝑌1 is
collected on the physical system. We simulate this new
matrix of signals by taking the test set relative to the 16th
node, since it is completely new to the dictionary and
presents anomalies. We then compute its sparse repre-
sentation matrix 𝑋1 with a single run of OMP-QR with
𝑠 = 15, taking around 3 seconds. The sparse represen-
tation matrix is then sent to the digital system where is
used to reconstruct the signals as 𝑌1̂ = 𝐷𝑋1. To evalu-
ate the information loss due to the data compression we
consider the autoencoder trained in the first run on the
compressed train set and look if it is still able to detect
the same anomalies testing it on the compressed test set
𝑌1̂. We obtain extremely good results, achieving an F-
score of 97% on normal samples and 89.9% on anomalies.
These outcomes are very close to the results obtained
without compression, which were respectively 97.9% and
90.7%. The DL setting that we choose is indeed a sensi-
ble choice: increasing the compression level contributes
to smooth the signals with beneficial results, yet it re-
mains highly representative with the sparsity level set to
𝑠 = 20. We conduct a similar experiment using random
compression, instead of DL, retaining only 30% of the
samples chosen randomly from the test set, obtaining
a F-score equal to 98% on normal samples and 63% on
anomalies which is definitely worst. Thanks to this work-
flow, instead of transmitting the entire signal matrix 𝑌1

of dimensions 165 × 3074, is enough to compute and
transfer its sparse representation 𝑋1 which requires the



storage of 20× 3074× 3 elements. This results in mem-
ory gain of 73%, requiring only 3 seconds and causing a
minimal loss of information.

This process can be iterated multiple times, until the
dictionary 𝐷 requires updating to ensure more accu-
rate outcomes. For instance, the dictionary might be
refreshed periodically or whenever the performance of
the AI algorithm on the compressed dataset begins to
significantly decline. The results confirm that the dictio-
nary 𝐷 learned on the training set manages to represent
new signals quite effectively. Indeed the accuracy lev-
els achieved by the signals reconstructed with the old
dictionary 𝐷 are good, allowing a significant gain in
computational efficiency.

5. Conclusions
The purpose of this work was to introduce a new effi-
cient and lightweight compression tool within the Digital
Twins framework that has minimal impact on the accu-
racy of AI models trained on compressed data (DL4DT).
The numerical experiments showed that both with time-
series and images the algorithm exhibited excellent be-
haviour, managing to compress the dataset up to 80%
while preserving key information and therefore keeping
the accuracy almost unchanged. As shown in Section 4.3,
the dictionary learned from training data was able to rep-
resent new signals in an accurate manner in a sparse way.
Moreover, in examples carried out on D.A.V.I.D.E. dataset
turned out that such an algorithm also enhances data
quality, serving as a potential preprocessing tool. Finally,
due to the low computational cost of our parallel imple-
mentation of the OMP-QR, this approach allowed for
on-device data compression, particularly useful with de-
vices like IoT sensors, effectively reducing data exchange
between devices while retaining the most crucial infor-
mation. In conclusion, we can state that the DL compres-
sion algorithm effectively reduces the dataset memory
demand, resulting in faster data transmission and reduced
latency between distinct systems. Such a compression
tool can have significant implications in Industry, where
network infrastructures may not be high-performing but
a wise and efficient use of digital twin systems is crucial
for optimizing and managing production.

Acknowledgments
This work is supported by the EUROCC Italy National
Competence Center. The Competence Center is part
of EUROCC project funded by the European High-
Performance Computing Joint Undertaking (JU) under
grant agreement No 101101903. A special thanks to the
CINECA HPC department for their technical support.
The work of MP is partially supported by INdAM-GNCS.

References
[1] R. Archibald, H. Tran, A dictionary learning al-

gorithm for compression and reconstruction of
streaming data in preset order, Discrete and Con-
tinuous Dynamical Systems - Series S 15 (2021).
doi:10.3934/dcdss.2021102.

[2] A. Khelifati, M. Khayati, P. Cudré-Mauroux,
Corad: Correlation-aware compression of mas-
sive time series using sparse dictionary coding,
in: 2019 IEEE International Conference on Big
Data (Big Data), 2019, pp. 2289–2298. doi:10.1109/
BigData47090.2019.9005580.

[3] B. Dumitrescu, P. Irofti, Dictionary Learn-
ing Algorithms and Applications, Springer
Cham, 2018. doi:https://doi.org/10.1007/
978-3-319-78674-2.

[4] B. Sturm, M. Christensen, Comparison of orthogo-
nal matching pursuit implementations, EURASIP,
2012, pp. 220–224.

[5] L. Cavalli, Analysis and implementation of Dic-
tionary Learning techniques in a Digital Twin
framwork, Master thesis, University of Bologna,
Bologna, Italy, 2023. Available at https://github.
com/Eurocc-Italy/DL4DT.

[6] M. Aharon, M. Elad, A. Bruckstein, K-svd: An algo-
rithm for designing overcomplete dictionaries for
sparse representation, IEEE Transactions on Signal
Processing 54 (2006) 4311–4322. doi:10.1109/TSP.
2006.881199.

[7] Cineca, Galileo100, 2021. URL: https://www.hpc.
cineca.it/systems/hardware/galileo100/.

[8] L. Deng, The mnist database of handwritten digit
images for machine learning research [best of the
web], IEEE Signal Processing Magazine 29 (2012)
141–142. doi:10.1109/MSP.2012.2211477.

[9] J. Wichard, Classification of ford motor data (2009).
[10] A. Borghesi, A. Libri, L. Benini, A. Bartolini, On-

line anomaly detection in HPC systems, CoRR
abs/1902.08447 (2019). URL: http://arxiv.org/abs/
1902.08447. arXiv:1902.08447.

[11] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano,
L. Benini, Anomaly detection using autoencoders
in high performance computing systems, CoRR
abs/1811.05269 (2018). URL: http://arxiv.org/abs/
1811.05269. arXiv:1811.05269.

[12] E4 computer engineering., https://www.e4company.
com/en/, 2024.

[13] F. Chollet, Simple mnist convnet, https://keras.io/
examples/vision/mnist_convnet/, 2020.

[14] H. Fawaz, Timeseries classification from scratch,
https://keras.io/examples/timeseries/timeseries_
classification_from_scratch/, 2023.

[15] Joblib, https://github.com/joblib/joblib, 2023.

http://dx.doi.org/10.3934/dcdss.2021102
http://dx.doi.org/10.1109/BigData47090.2019.9005580
http://dx.doi.org/10.1109/BigData47090.2019.9005580
http://dx.doi.org/https://doi.org/10.1007/978-3-319-78674-2
http://dx.doi.org/https://doi.org/10.1007/978-3-319-78674-2
https://github.com/Eurocc-Italy/DL4DT
https://github.com/Eurocc-Italy/DL4DT
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TSP.2006.881199
https://www.hpc.cineca.it/systems/hardware/galileo100/
https://www.hpc.cineca.it/systems/hardware/galileo100/
http://dx.doi.org/10.1109/MSP.2012.2211477
http://arxiv.org/abs/1902.08447
http://arxiv.org/abs/1902.08447
http://arxiv.org/abs/1902.08447
http://arxiv.org/abs/1811.05269
http://arxiv.org/abs/1811.05269
http://arxiv.org/abs/1811.05269
https://www.e4company.com/en/
https://www.e4company.com/en/
https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/timeseries/timeseries_classification_from_scratch/
https://keras.io/examples/timeseries/timeseries_classification_from_scratch/
https://github.com/joblib/joblib

	1 Introduction
	2 Dictionary Learning overview
	3 Dictionary Learning to reduce latency in Digital Twin
	4 Numerical Results
	4.1 Datasets
	4.2 Dictionary Learning compression
	4.3 Dictionary representativity

	5 Conclusions

