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Abstract
This paper examines the effects of GitHub Copilot, a prominent example of generative artificial intelligence (GAI), on software
development methodologies. Through an empirical study of GitHub Copilot’s performance in a professional setting, we assess
its value across various programming environments. Our comprehensive evaluation reveals that GitHub Copilot significantly
improves developer productivity and assistance in different coding scenarios. Furthermore, the research outlines effective
strategies for leveraging GitHub Copilot to its fullest potential, thus advancing the use of GAI tools in software engineering.
While recognizing GitHub Copilot’s considerable advantages, we also identify its shortcomings and areas in need of further
improvement.
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1. Introduction
The advent of Generative Artificial Intelligence (GAI) is
transforming our approach to creativity and the produc-
tion of new content. GAI encompasses machine learning
algorithms capable of generating content—ranging from
images, videos, and text to music—that mirrors the style
and quality of human-created works.

Recent breakthroughs in deep learning have given rise
to sophisticated GAImodels, such as latent diffusionmod-
els [1] and Generative Pre-trained Transformers (GPT)
[2]. These models, capable of producing realistic and var-
ied content with minimal human oversight, are trained
on extensive datasets and generate new items by sam-
pling from a learned probability distribution.

GAI’s potential is vast, with applications including the
creation of lifelike virtual imagery (e.g., DALLE-3 [3],
Midjourney [4], Stable Diffusion [5]), serving as efficient
writing assistants or conversational agents (e.g., ChatGPT
[6], LLAMA [7], Gemini [8], Claude [9]). However, the
rapid adoption of GAI technologies necessitates careful
consideration of their ethical and responsible use, partic-
ularly in light of significant ethical and legal challenges
such as intellectual property rights, privacy issues, and
the potential for misuse of GAI-generated content.

2. GitHub Copilot
GitHub Copilot distinguishes itself as an innovative appli-
cation of GAI, offering substantial assistance to develop-
ers in coding tasks. It is based on a GPT-3.5 model, which
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is part of the advanced Generative Pre-trained Trans-
former series. This model leverages the Transformer
architecture [10], renowned for its efficacy in processing
and generating text that closely resembles humanwriting.
GPT-3.5’s capabilities extend to a comprehensive under-
standing of language subtleties, contextual nuances, and
notably, programming code syntax.
GitHub Copilot’s primary objective is to enable pro-

grammers to concentrate on problem-solving instead of
searching for the appropriate libraries and functions to
implement their desired solution. With this tool, pro-
grammers can unlock a new level of productivity and
efficiency and deliver high-quality code in a fraction of
the time that it typically takes.
The primary capabilities of GitHub Copilot can be

summarized as follows:

• Natural language interface: Developers can inter-
act with GitHub Copilot using natural language
commands. This means they can describe what
they want to achieve in plain English, and GitHub
Copilot will suggest code to accomplish the task.

• Integrated with IDEs: GitHub Copilot is inte-
grated with popular code editors and IDEs, in-
cluding Visual Studio Code, Visual Studio MSDN,
and PyCharm.

• Context-aware: GitHub Copilot analyzes the con-
text of the code being written and generates sug-
gestions accordingly.

• Privacy-focused: GitHub Copilot for Business
does not retain telemetry or code snippets data.

While GitHub Copilot can be a powerful tool for devel-
opers, it is important to underline some of the potential
concerns that are also somewhat common to most Large
Language Models:

• Potentially inaccurate code: one potential con-
cern with GitHub Copilot is that it may generate
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incorrect or non-functional code.
• Limited world or codebase knowledge after the
training date: this might cause the suggestion
of deprecated methods for libraries that change
significantly over time.

• No match with the information that the program-
mer has: this is true for both the overall context of
the code that it is suggesting, and some intrinsic
knowledge about the world that the programmer
has, like awareness among other things.

To address these concerns, it is important for devel-
opers to carefully review and test the code generated by
GitHub Copilot.

3. Methodology
With the advent of this groundbreaking technology, it
is crucial to thoroughly evaluate its potential through
extensive testing. At Prometeia, a software development-
focused consulting firm, we’ve decided to embark on a
pilot study aimed explicitly at evaluating the functionali-
ties of GitHub Copilot.
We chose GitHub Copilot Business over alternatives

like Tabnine, Blackbox, and Sourcery due to its wide
range of supported programming languages, compatibil-
ity with various Integrated Development Environments
(IDEs), and advanced features that meet enterprise stan-
dards, including scalability, security, and compliance.
Various reviews and studies, including those by

Vaithilingam [11], the GitHub Copilot study [12]. How-
ever, these investigations have occasionally encountered
contradictory findings and have not specifically concen-
trated on the implementation of this tool within a real-
world corporate environment.

Undertaking a pilot study offers numerous advantages,
making it a strategic approach for our evaluation process.
Firstly, the pilot allows our developers to assess the tool’s
effectiveness by testing it on a small scale. This provides
an opportunity to gauge how well GitHub Copilot can
assist in achieving their objectives, determine if the gen-
erated code meets their requirements, and assess if it
improves their current development process. Secondly,
a pilot study can assist us in identifying any limitations
or potential issues with GitHub Copilot, such as difficul-
ties with specific programming languages or complex
coding tasks. By identifying such limitations early on,
we can avoid potential problems and find alternatives
or workarounds to using the tool, thus saving time and
money in the long run. Hence, this initiative aimed to
determine whether GitHub Copilot would be a viable
addition to our software development toolkit.
To compare our findings with other studies, we in-

cluded most of the key performance indicators (KPIs)

tracked in the previous ones. Therefore, we decided
to adopt the SPACE framework (Forsgren, 2021 [13]),
which focuses on various aspects of developer productiv-
ity, ranging from overall individual satisfaction to knowl-
edge sharing among different individuals. A summary of
these questions can be found at the following url.

3.1. Participants Selection
For this study, we selected 31 participants from three
specialized branches within our company, in particular:

• Branch A, a development team of a long-
standing software solution, working on both new
features and the maintenance of pre-existing
ones.

• Branch B, focused mostly on the development
of a new software product.

• Branch C, the development team of a software
cloud product, engaged with both development
of new features and maintenance.

These participants were selected due to their involve-
ment in a broad range of projects, encompassing both
innovative and established (legacy) projects. To promote
an unbiased evaluation, we refrained from assigning pre-
determined tasks, allowing participants to incorporate
the tool into their regular workflow. Over a two-month
observation period, we monitored their usage of GitHub
Copilot, aiming to capture its utility across diverse project
types and user experiences. Notably, all of the selected
participants had no less than 1 years of programming
experience.

In order to gather participant feedback, we organized
a series of in-person meetings, offering a forum for them
to share their experiences with GitHub Copilot. Based on
the insights gained during these discussions, we crafted
a 16-question survey covering the SPACE framework
dimensions (available at the following url). This survey
mixed questions from existing research with new ones
specifically designed for this study, including both closed
and open-ended questions. The closed-ended questions
aimed to collect quantitative data, while the open-ended
ones sought to capture more nuanced feedback on their
experiences. This approach aimed to collect quantitative
and qualitative data to comprehensively evaluate GitHub
Copilot’s performance.

4. Results & Discussion
The following section presents some of the key findings
obtained from the analysis of participant responses. This
section will be divided into three parts:
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• overall ratings: Participants were asked to rate
GitHub Copilot on a scale from 1 to 10, with 10
being the highest score. This rating serves as an
overall assessment of GitHub Copilot’s perfor-
mance and effectiveness.

• main benefits: This section highlights the areas
where GitHub Copilot excels. It examines the
specific aspects or functionalities of the tool that
participants found most valuable or beneficial in
their programming tasks.

• main drawbacks: In this part we explore the
challenges or limitations experienced by partic-
ipants when using GitHub Copilot. It focuses
on the areas where the tool may struggle or en-
counter difficulties, as reported by the partici-
pants.

In the following sections, we will delve deeper into
these areas to comprehensively analyse the findings.

Figure 1: Overall rating given to GitHub Copilot, by program-
ming language

4.1. Overall feedback
The evaluation of GitHub Copilot’s efficacy, as illustrated
in Figure 1, reveals an overall positive reception, with
a computed mean rating of 7.4 on a scale where higher
values denote greater approval. This overarching as-
sessment, however, masks underlying variations in user
satisfaction that are closely linked to the specific pro-
gramming language in use by the developers.
A more granular analysis of the data shows that de-

velopers employing high-level programming languages,
notably Python and Java, tend to assign higher ratings
to GitHub Copilot. This distinction suggests a poten-
tial correlation between the nature of the programming
language and the tool’s performance. High-level lan-
guages, characterized by their abstraction from machine
languages and emphasis on readability, may inherently
facilitate more accurate and contextually relevant code

suggestions by AI-based tools like GitHub Copilot. Addi-
tionally, the extensive availability of open-source code in
these languages may provide a richer dataset for the AI’s
learning algorithms, enhancing its predictive accuracy
and relevance. Conversely, the analysis reveals a mod-
est decline in satisfaction among C# developers, with
a mean score of 7. This discrepancy hints at possible
limitations in GitHub Copilot’s adaptability or efficiency
across different programming environments. The factors
contributing to this variation could range from the struc-
tural and syntactical idiosyncrasies of C# that challenge
the AI’s prediction models, to a potentially lesser volume
of training data derived from C# codebases.

These insights advocate for a more nuanced approach
to the continuous development and refinement of GitHub
Copilot, emphasizing the need for language-specific op-
timizations to cater to the diverse requirements of the
development community. For users, the findings high-
light the importance of aligning expectations with the
capabilities and limitations of AI tools within specific
programming contexts.

4.2. Main benefits
The study’s findings, as visualized in Figure 2, delineate
the multifaceted benefits that GitHub Copilot offers to
developers, underscoring its impact on productivity and
code quality.
One of the principal advantages identified by partic-

ipants is Copilot’s proficiency in auto-generating boil-
erplate code and foundational code structures. This
feature significantly reduces the time and effort required
during the initial phases of project setup, allowing de-
velopers to bypass the tedium of crafting repetitive code
patterns from scratch. Such efficiency in establishing
project infrastructure is not only a time-saver but also
enables a smoother transition to more complex develop-
ment tasks.

Moreover, GitHub Copilot’s contribution to code doc-
umentation represents another vital benefit. The tool’s
ability to furnish quick and precise descriptions for func-
tions, classes, and various code segments assists develop-
ers in maintaining well-documented codebases. Proper
documentation is crucial for enhancing code readability,
facilitating easier maintenance, and enabling smoother
collaboration among team members. By automating this
aspect, Copilot aids in ensuring that projects adhere to
best practices in code documentation, thus elevating the
overall quality of the development process.

The generation of test code for existing functions by
GitHub Copilot is highlighted as a particularly advan-
tageous feature. This capability assists developers in
creating comprehensive test suites, a critical component
of the software development life cycle aimed at verifying
the correctness and reliability of code. Notably, we ad-



Figure 2: GitHub Copilot usefulness on different tasks

vised the developers to exercise increased caution when
incorporating tests authored by GitHub Copilot, given
their significant influence on the code’s overall reliability.

An interesting observation from the study is the strate-
gic utilization of time saved through GitHub Copilot’s
assistance. Many participants reported reallocating the
time gained to enhance the quality of their products
further by focusing on rigorous testing, refining doc-
umentation, or dedicating effort to areas of the project
that could benefit from manual oversight. Alternatively,
some participants chose to invest the saved time into per-
sonal development, such as exploring new programming
libraries, learning new tools, or contributing to other
projects. This flexibility underscores Copilot’s role not
just as a tool for immediate productivity gains but also as
an enabler for broader professional growth and product
quality enhancement.

4.3. Main drawbacks
While GitHub Copilot has been lauded for its ability to en-
hance developer productivity and streamline workflows,
the tool is not without its limitations, which can impact
its overall effectiveness in certain contexts.

One notable concern is its integration with Integrated
Development Environments (IDEs), particularly when
used alongside other coding aids such as Intellisense.
Some users have reported conflicts between GitHub
Copilot and Intellisense, leading to potential confu-
sion and errors. This issue underscores the importance
of seamless tool integration within the development en-
vironment to prevent disruption in the coding process.

Another drawback observed by users is the tool’s ten-

Figure 3: Percentage of code lines written by GitHub Copilot

dency to suggest repetitive code. Such suggestions
can potentially lead to less efficient or elegant coding
solutions, contradicting the tool’s aim to streamline de-
velopment efforts. This behavior might stem from the
AI’s training data or its current understanding of best cod-
ing practices, indicating an area for further refinement
to ensure that Copilot consistently proposes high-quality
and contextually appropriate code.
The effectiveness of GitHub Copilot appears to vary

significantly when dealing with different types of code-
bases. Specifically, its performance with large or legacy
codebases presents challenges, as evidenced by a reported
median contribution of merely 10% (Figure 3) to the lines
of code written in such contexts. This reduced effec-
tiveness could be attributed to the AI’s limited ability to
fully comprehend the complexities and nuances of older



or more extensive codebases, leading to challenges in
generating accurate and useful code suggestions.
Conversely, GitHub Copilot demonstrates consider-

ably greater efficiency with new codebases, where it con-
tributes to around 30% of the written code. This discrep-
ancy highlights Copilot’s aptitude for aiding in the rapid
development of new projects, where its capabilities in
generating boilerplate code and structuring new projects
can be most beneficial.

5. Related works
The assessment of Artificial Intelligence (AI) tools’ impact
on various sectors, particularly in software development,
has been an area of interest in the recent years. The
advent of AI innovations has been consistently associ-
ated with enhancements in productivity levels and the
facilitation of a more intuitive process for coding, as doc-
umented in the findings of Chen et al. (2021) [14], who
illustrated the positive ramifications of AI on software
engineering practices.
In the realm of code generation, the deployment of

deep learning methodologies, especially those utilizing
Transformer models, has been met with considerable suc-
cess. A noteworthy illustration of this is the study by
Feng et al. (2020) [15], which presents a model that sig-
nificantly surpasses the efficiency of conventional code
completion tools. This approach, which harnesses the
power of deep learning to achieve a contextual compre-
hension and prediction, showcases the potential of gener-
ative AI to navigate and replicate complex coding idioms
and patterns with remarkable accuracy.
Furthermore, research conducted by Yetistiren et al.

(2022) [16] denotes the proficiency of GitHub Copilot
in understanding coding syntax. This underlines the
broad spectrum of advantages offered by AI in the realm
of software development, extending beyond mere pro-
cedural improvements to include significant qualitative
enhancements in code management and optimization.

Despite the proliferation of studies and reviews in this
area, it is crucial to acknowledge the predominance of
in vitro research methodologies (where specific program-
ming tasks are assigned to participants) and the occa-
sional emergence of conflicting findings, as highlighted
by Vaithilingam (2022) [11] and the study on GitHub
Copilot (2021) [12]. These discrepancies underscore the
necessity for our own comprehensive in vivo study (in
which no specific programming tasks are prescribed), in-
volving a diverse array of developers from various corpo-
rate sectors, employing different Integrated Development
Environments (IDEs), and programming languages.

5.1. Comparison with other studies
To further understand the impact of GitHub Copilot, we
incorporated a key performance indicator (KPI) from a
GitHub Copilot survey [12] for a direct comparison with
our study’s outcomes. Our findings, reported in Table
1 showed notable differences from GitHub’s reported
results. Although our results still reflect a highly positive
sentiment, it is important to note that the differences may
be attributed to the nature of the experiments conducted
by GitHub. Specifically, our study population consisted
of individuals with impending deadlines, which could
influence their perceptions and experiences with the tool.

GitHub Prometeia

Question Overall Overall Branch A Branch B Branch C

Focus on more satisfying
work

74% 35% 36% 44% 27%

Feel more productive 88% 32% 18% 44% 36%
Are faster with repetitive
tasks

96% 74% 82% 78% 63%

Table 1
GitHub study performance metrics

The variations in percentages observed between the
groups can be ascribed to various factors, such as the pro-
gramming languages employed by developers and the
nature of the projects they were engaged in. For exam-
ple, diverse branches may adopt distinct programming
practices, preferences, and project requirements, which
can shape their views and usage of GitHub Copilot. Ad-
ditionally, the nature of the projects (whether new or
legacy) can also impact how the benefits and drawbacks
of GitHub Copilot are perceived. These factors highlight
the significance of considering the context in which the
tool is employed and comprehending its potential influ-
ence on the recorded percentages.

6. Conclusions
The study revealed a generally positive overall rating
for GitHub Copilot, with developers giving it an average
score of 7.4 (out of 10) and, as expected, ratings varied
based on the programming language used. Our develop-
ers identified several benefits of using GitHub Copilot.
One of its main advantages is the ability to generate boil-
erplate and basic code structures, saving developers time
and effort during project setup. Additionally, the tool
ensures proper code documentation by providing accu-
rate descriptions of functions, classes, and other code
elements. Another notable benefit is its capability to
generate test code for existing functions, contributing to
code reliability. Coherently with its original goal, this
study proved GitHub Copilot effective in supporting our
software development activities. As a result, various
branches of our company started using the tool as part of



their development standard toolkit. Lastly, we could not
evaluate the tool on junior programmers, which leaves
an area of inquiry for future studies. Understanding how
newcomers to the field, with potentially different learn-
ing curves and development practices, interact with and
benefit from GitHub Copilot could provide valuable in-
sights into its overall utility and areas for improvement.
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