
Single-instance, multi-target learning of 3D architectural
gridshells for material reuse and circular economy
Andrea Favilli1,2,∗, Francesco Laccone1, Paolo Cignoni1, Luigi Malomo1 and Daniela Giorgi1

1Institute of Information Science and Technologies ”A. Faedo” (ISTI), National Research Council of Italy (CNR), via G. Moruzzi 1, Pisa, 56124, Italy
2University of Pisa, Lungarno Pacinotti 43, Pisa, 56126, Italy

Abstract
We propose a learning-based method for the assisted design of 3D architectural free-form gridshells which reuse elements from
dismantled, old buildings. Given a gridshell design as input, the output is a learned gridshell whose shape has been modified
to reuse as many stock elements as possible, while preserving the design intent and optimizing for statics performance. The
main idea is to perform multi-target shape optimization as a single-instance machine learning task, featuring differentiable
losses that account for both structural and stock constraints. Since our approach enables the reuse of existing elements for
new designs, it reduces the need for sourcing new materials and for disposing waste. Therefore, it contributes to switch to a
circular economy and alleviate the environmental impact of the construction sector.
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1. Introduction
The construction sector is responsible for over 35% of
the total waste generation in Europe, and for a large frac-
tion of the overall energy consumption and greenhouse
gas emissions [1]. Indeed, new constructions require
large volumes of material, and demolitions produce large
amounts of waste. These figures are expected to rise in
the next decades, due to the growing of the population
and its demands.
A possible solution to reduce the environmental and

societal impact of the construction industry is to recycle
or reuse construction materials. Recycling means repro-
cessing waste to generate new products, while reusing
means recirculating existing elements and using them
for new constructions. In particular, increasing reuse in
the construction sector has the potential to save material
and energy, as it avoids sourcing new materials, and to
reduce waste at the same time.
One of the main barriers that hinder reuse in con-

struction is that the design of structures from stocks of
reclaimed elements is totally different from traditional de-
sign. Since the designed structure has to conform to the
available elements and their characteristics (e.g., length),
one has to rethink the whole design process.
In this paper, we propose a method for the assisted

design of 3D architectural free-form gridshells from fully-
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disassembled structures, where the stock of available ma-
terial includes individual structural elements (beams) of
specified length and cross section. 3D gridshell struc-
tures are discrete networks of straight bars (the beams)
connected by joints at the nodes [2]. Gridshells are gan-
ing momentum in free-form surface design, as they can
cover large spaces while keeping the amount of mate-
rial relatively small. Figure 1 shows three examples of
gridshells located in London, Warsaw and Singapore.
Starting from a initial design, we propose a multi-

target, learning-based method that aligns the gridshell
beams to the stock of available beams, while at the same
time improving the statics performance of the whole
structure. Differently from existing techniques, which
are either based on heuristics for solving assignment
problems or on mixed integer optimization, we leverage
on recent advances in 3D deep learning for architectural
geometry [3], and cast the problem as a single-instance
learning task. The input is the original design of a grid-
shell, and the output is a gridshell whose elements’ shape
has beenmodified to reuse as many stock elements as pos-
sible, while preserving the design intent and optimizing
for statics performance.
The pipeline works in two steps (Figure 2). The first

step improves the structural compliance of the gridshell,
by means of a neural network featuring a loss that takes
stress into account; the second step assigns stock beams
to gridshell beams, with the assignment problemmodeled
using soft constraints included in a differentiable loss.
For the first time, we extend stock-constrained struc-

tural optimization to 3D gridshells, which are more com-
plex structures than those addressed by the state of the
art, mostly 2D structures made of trusses. Also, for the
first time we propose a learning strategy to combine
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Figure 1: Examples 3D gridshells: from left to right, the Queen Elizabeth II Great Court at the Britsh Museum in London,
Złote Tarasy in Warsaw, Changi Airport Jewel in Singapore.

material reuse and environmental impact minimization
with the optimization of structural performance, manda-
tory to ensure stiffness, equilibrium, and durability of 3D
architectural structures.

We describe a real-world case study, in which the size
and capacity of the beam stock are defined from an exist-
ing building to dismantle in Tuscany, Italy. We demon-
strate how our single-instance learning method enables
the reuse of a large fraction of the available material for
the design of statics-aware 3D freeform gridshells. Our
approach can contribute to switch to a circular economy,
and to alleviate the environmental impact of architectural
buildings.

2. Related work
In response to the pressing environmental and economic
demands, reuse strategies are being prioritized in archi-
tecture and in the construction industry. The initiatives
encompass a variety of structures and constitutive el-
ements (e.g., trusses, beams, and panels), and employ
different optimization paradigms to minimize for exam-
ple material cost and carbon emissions.
In particular, there has been considerable attention

to the design of new structures starting from stocks of
elements from old structures. Brütting et al. [4] perform
layout optimization of bidimensional structures starting
from recycled stocks of trusses. The layout optimiza-
tion starts from a template structure and selects truss
elements to determine the final topology. Elements from
the batch are matched to their position in the assembled
structure through mixed-integer optimization. Similarly,
Van Marcke et al. [5] explore truss reuse by organizing
recycled trusses to form planar frameworks, rather than
undertaking layout optimization. Expanding beyond the
flat scenario, Brütting et al. [6] provide an algorithmic
solution to build 3D frames made of hexahedral cells of
recycled trusses.
Unlike the aforementioned studies, which optimize

truss structures, our work targets gridshells consisting

of triangular beam nets approximating freeform surfaces.
While beams experience axial forces and moments, trans-
verse shear and bending, trusses are only subject to ax-
ial forces. Moreover, most existing layout optimization
methods seek an optimal shape configuration for the recy-
cled stock from scratch. Instead, we improve an existing
design shape provided as input.
Finally, while the works mentioned above assign the

available elements through constrained optimization, we
define soft constraints to frame the reuse problem into a
single-instance machine learning task. We leverage on
[3], in which a geometric deep learning model performs
statics-driven optimization while preserving the origi-
nal shape design of the input grid shell. In the present
paper, we incorporate a vertex correction optimizer to
ensure compatibility of elements with the available stock,
and blend the learning model and the optimizer in a
multi-target architecture. In this way, we simultaneously
achieve two objectives: minimizing static compliance
by reducing the strain energy, and enabling the reuse
of elements through a soft-constrained beam matching
procedure. In contrast, in existing works the only target
is the reuse of elements, while the static performance is
considered only to guarantee the structure feasibility by
including hard constraints [4].

3. Methods and results
Our aim is to reuse building elements from old structures
to build new 3D grdshells, which conform to a given de-
sign and are also optimal in terms of statics performance.
Given a 3D gridshell as input with the sought shape, we
learn a new, improved gridshell, in which the shape of
the single elements is optimized to conform to the stock
of available ones, while the overall shape is optimized to
improve statics performance.

The idea is to perform multi-target shape optimization
on gridshells as a single-instance machine learning task.
Classical multi-target methods usually incorporate all op-
timization targets into a single loss function, expressed



Figure 2: The pipeline of our method. Our single-instance, multi-target learning model involves two agents (blue boxes): a
geometric deep learning model (Agent1) and a vertex correction displacer (Agent2). The learning model consumes an input
mesh and produces an intermediate shape to be fed to the vertex displacer and to minimize mean strain energy. The displacer
optimizes for the assignment of stock beams to gridshell elements, and preserves fairness with respect to the intermediate
result (through area variance and Chamfer distance). The agents are driven by different losses (light blue boxes) and collaborate
to achieve both material reuse and good statics performance.

as a weighted sum of components. However, assigning
weights to components can be tricky, especially if differ-
ent scales are involved, and if the targets are conflicting.
Therefore, instead of using a heterogeneous loss, we in-
volve the interaction of two agents: a geometric deep
learningmodel (Agent1 in Figure 2) and a vertex displacer
(Agent2 in Figure 2). Each agent is driven by distinct op-
timization targets (statics for Agent1, reuse of elements
for Agent2) and corresponding loss functions.

Given a triangle mesh representing the initial grid shell
structure, the learning model (Agent1) operates on the
mesh geometry to optimize the mean strain energy of the
structure. then, the optimizer (Agent2) corrects the new,
learned vertex positions to align the beam lengths with
the ones available in the stock. We take into account both
beam lengths and stock capacity. Indeed, the corrections
ensure that the number of beams matched to a particular
length does not exceed their capacity in the stock.
Our process is framed as a single-instance learning

task, where both agents iteratively learn from the input
gridshell structure. Iterations consist of interleaved steps
of the two agents. Each agent has its own loss (light
blue boxes in Figure 2), and collaboration between the
agents is achieved through mutual agreement: the learn-
ing model (Agent1) adjusts its weights to enhance the

strain energy of the shape corrected by Agent2; in turn,
Agent2 displaces vertices to ensure the alignment with
the recycled stock, taking care not to increase the Cham-
fer distance from the shape produced by Agent1. This
ensures smooth convergence and, as a byproduct, the
final, optimized design is also consistent with the input
shape in terms of geometric features.

To test our technique, we identified a disposing indus-
trial building located in Pisa, Tuscany, whose roof bays
are made of truss-like structural units adequate to be
reused as beams for a new gridshell. We examined the
original project of the donor building and extracted a het-
erogeneous stock of units whose lengths span from 0.75
to over 6 meters, with 288 elements available for each of
the 9 available lengths. Figure 3 shows an example 3D
gridshell that could be constructed using the stock of ele-
ments from the disposed building. Figure 3(a, left) shows
the input design and the optimized output; (a, middle) the
color-coded expected structure deformation in meters;
and (a, right) the edge strain energy of the structure under
service load; red (resp. blue) means higher (resp. lower)
values. It can be seen that the expected deformation of
the optimized structure is significantly lower, implying
better statics performance for the building; analogously,
the strain energy on edges is significantly reduced.
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Figure 3: Results of our method on a sample freeform shape. (a) Left: the shape provided as input and the multi-target
optimized output. Middle: the deformation of the structural nodes under the action of Service Load. Right: the strain energy
for each beam. (b) Left: a bar diagram showing the assignment of beams to the input stock. Right: the beam assignment
shown through colored edges on the output shape.

Figure 3(b, left) reports a bar chart with the assignment
of stock elements, and (b, right) the output gridshell with
the location of reused elements (color-coded according
to their lengths). A large fraction of stock elements has
been reused, apart from the shortest and longest ones
(note that longer elements can be cut and then reused,
yet cutting comes with a cost). Also, the shape and style
features of the original design have been fully preserved.
It is important to underline that our method enables

the reuse of stock of elements for any input gridshell
design: Figure 3 only shows an example, whereas many

other designs could have been produced. This is different
from what is enabled by existing techniques, which only
look for compatible designs, given the available stock.
Therefore, our technique leaves to the architect complete
design freedom, while taking care of structural perfor-
mance and environmental impact.

4. Conclusions
The reuse of structural elements for the design and fabri-
cation of new architectural structures has the potential to



greatly reduce the environmental impact of the construc-
tion industry. Increasing reuse comes with the challenge
of formulating new design paradigms, which take into ac-
count the characteristics of the available material without
affecting design freedom. At the same time, such design
paradigms should take into account statics performance.
In this paper, we define a learning-based technique that
addresses all three points above for the design of 3D grid-
shells, as demonstrated by a real-world case study on the
reuse of elements from an existing building.
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