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Abstract
Developing software is one of the most important and crucial activity in the IT domain. It is an important, challenging and
time consuming activity due to many factors that spaces from software complexity up to testing and deployment phases.
In the past decades, a plethora of tools have been released for helping developers in coding faster, however they are now
becoming ineffective and unable to keep up with the change affecting the IT development.

This paper investigates the potential of generative AI in the realm of software development, focusing on how these
technologies can augment the coding process, from initial concept to final deployment. It begins by delineating the funda-
mental mechanisms through which generative AI models, such as code completions and automated code generation can
enhance developer productivity, reduce error rates and streamline the software development lifecycle. We conducted an
experimentation on several repositories obtaining around 25% of software issues automatically fixed with a 17x speed up.
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1. Introduction
In the rapidly evolving field of software engineering, un-
derstanding the intricacies of the software development
process is crucial for delivering high-quality, efficient and
reliable software solutions. This paper delves into the
comprehensive study of the software development lifecy-
cle, focusing on pivotal aspects such as code quality, im-
plementation and testing. By dissecting these elements,
we aim to offer insights into optimizing the development
process, ensuring that software not only meets but ex-
ceeds the rigorous demands of applications to be realized.
At the heart of any software project lies the quality

of its code, which serves as the cornerstone for func-
tionality, maintainability, and scalability. We explore
methodologies and practices such as code reviews, static
code analysis, and adherence to coding standards that
contribute to enhancing code quality. By integrating
these practices, developers can reduce bugs, facilitate
easier updates, and ensure a robust foundation for the
software’s architecture. The phases of implementation
and testing are critical for transforming conceptual de-
signs into functioning software. Contributions. This
paper examines how generative AI models have been
integrated in a DevOps pipeline for helping in improving
the quality of the software released. We conducted an ex-
perimentation on several repositories in Java and C# and
we demonstrated that our solution is able to fix around
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25% of software issues 17x faster than a developer.

2. Related Work
Developing an automatic code fixer is key for enhancing
programming productivity [1] and is an active area of
research [2, 3, 4].

This trend has gained increasing popularity in recent
years. Examples include Google’s Tricorder [5], Face-
book’s Getafix [6] and Zoncolan and Microsoft’s Visual
Studio IntelliCode. The techniques underlying these tools
can be classified into broadly two categories: logical, rule-
based techniques [5] and statistical, data-driven tech-
niques [7, 6, 8]. The former uses manually written rules
capturing undesirable code patterns and scans the entire
codebase for these classes of bugs. The latter learns to
detect abnormal code from a large code corpus using
deep neural networks.

Despite great strides, however, both kinds of tools are
limited in generality because they target error patterns in
specific codebases or they target specific bug types. For
instance, Zoncolan’s rules are designed to be specifically
applicable to Facebook’s codebases, and deep learning
models target specialized bugs in variable naming [7]
or binary expressions [6]. Moreover, the patterns are
relatively syntactic, allowing them to be specified by
human experts using logical rulesor learnt from a corpus
of programs.

In this paper, we propose an effective and scalable easy-
to-use framework for fixing software issues in a DevOps
pipeline by means of an LLM model (i.e., GPT3.51).
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Figure 1: Distribution of the fixed issues on five classes.

3. Experimental Evaluation
In this section, we report a study on how issues are dis-
tributed and results on two languages that are the most
widely used by developers.

3.1. Issue Distribution
We conducted an analysis about the distribution of issues
being fixed by the proposed approach among five classes
that we defined (see Figure 1).
Looking at the plot, on three classes the proposed solution
is able to correct around 50% of the issues whilst on the
remaining two classes the fixing rate is around 30%.
Unused variables/fields: in this class there are five

SonarQube rules. In order to better understand what
kind of issues belong to this class, here two examples: 1)
remove this useless assignment to local variable x and 2)
remove this unused x local variable.

Exception handling: in this class there are six Sonar-
Qube rules. The type of issues belonging to this class are
for example: 1) either log or rethrow this exception and 2)
throw a dedicated exception instead of a generic one.
Best practices/conventions: in this class there are

twenty-seven SonarQube rules. The type of issues be-
longing to this class are for example: 1) rename this field
x to match the regular expression y and 2) block of com-
mented lines of code should be removed.

Repo Issue Fixed Tec. Debit Red. Speed Up
# 1 100.0 % 63.0 % 10.3x
# 2 41.0 % 13.1 % 2.4x
# 3 36.6 % 10.3 % 2.2x
# 4 32.5 % 20.0 % 2.0x
# 5 46.5 % 26.6 % 2.9x
# 6 58.3 % 46.4 % 17.0x
# 7 47.3 % 26.7 % 2.0x
Avg 51.7 % 29.4 % 5.5x

Table 1
Results on Java repositories.

Code structure/elements: in this class there are
thirty-five SonarQube rules. The type of issues belonging
to this class are for example: 1) merge this if statement
with the enclosing one and 2) add a x field to this class.

Code complexity: in this class there are ten Sonar-
Qube rules. The type of issues belonging to this class are
for example: 1) the cyclomatic complexity of this method
x is greater than the authorized value and 2) remove this
expression which always evaluates to x.

3.2. Performance Results
We report the quantitative evaluation of the proposed
solution on the two languages of the experimentation.
In Table 1, we summarize the results on Java language



Repo Issue Fixed Tec. Debit Red. Speed Up
# 1 46.7 % 36.4 % 2.5x
# 2 30.6 % 12.8 % 1.6x
# 3 39.6 % 18.5 % 1.3x
# 4 32.4 % 14.3 % 0.7x
# 5 37.1 % 34.5 % 2.7x
# 6 38.2 % 21.8 % 3.0x
# 7 61.2 % 42.9 % 4.8x
Avg 40.8 % 25.9 % 2.4x

Table 2
Results on C# repositories.

on which an average debit reduction of 29,4% has been
reached, with a peak of 63.0%. The pipeline executes on
average 5.5 times faster than developers with a peak of
17 times. In Table 2, we summarize the results on C#
language on which an average debit reduction of 25,9%
has been obtained, with a peak of 42.9%. The pipeline ex-
ecutes on average 2.4 times faster than developers with
a peak of 4.8 times. Results on C# are slightly worst
because code is more complex and for building and an-
alyzing the code more time is required with respect to
Java.

4. Conclusions
In conclusion, our comprehensive study elucidates the
multifaceted nature of the software development pro-
cess, offering insights into optimizing development prac-
tices to meet and exceed the demanding requirements of
today’s applications. The integration of generative AI
models into the software development lifecycle marks a
significant advancement, showcasing the potential to rev-
olutionize how software is developed, tested, and main-
tained. This paper contributes to the body of knowledge
by demonstrating the effectiveness of these models in

improving software quality and development efficiency,
setting a precedent for future research and application
in the field of software engineering.
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